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a b s t r a c t

High frequency ultrasound backscattered signals (20 - 60 MHz) from normal and apoptotic cell pellets 
differ in their backscatter intensity, and analyzing these signals could assist in the non-invasive moni­
toring of cancer therapy. In this work, the reflection coefficients of the lattice prediction error filter are 
used as feature set for parametric analysis and signal classification. The ultrasound (US) backscattered 
signal databases consisted of combinations of treated (apoptotic) and untreated (normal) cells mixed 
in different proportions. A 40 MHz commercial ultrasound imaging system was used. A classification 
accuracy of 97-100% for normal and apoptotic signals were obtained with a model order 15. The pos­
itive results ascertain that the reflection coefficient is a potential tool for analyzing biomedical signals 
such as US backscattered signals.

s o m m a i r e

Les ultrasons à haute fréquence backscattereddes signaux (20 - 60 mégahertz) de normal et les granules 
apoptotic de cellules diffèrent dans leur intensité de rétrodiffusion, et l’analyse de ces signaux pourrait 
aider à la surveillance non envahissante de la thérapie de cancer. Dans ce travail, les coefficients de 
réflexion du filtre d’erreurs de prévision de trellis sont employés comme le dispositif a placé pour la 
classification paramétrique d’analyse et de signal. Les ultrasons (US) backscattered des combinaisons 
composées par bases de données de signal des cellules (normales) traitées (apoptotic) et non traitées 
mélangées dans différentes proportions. Un système commercial de formation image d’ultrasons de 
40 mégahertz a été employé. Une exactitude de classification de 97-100% pour les signaux normaux 
et apoptotic ont été obtenues avec un ordre modèle 15. Les résultats positifs établissent que le coef­
ficient de réflexion est un outil potentiel pour analyser les signaux biomédicaux tels que les ultrasons 
backscattered des signaux.

1 i n t r o d u c t i o n

During the cell division if the DNA is not replicated prop­
erly, the cell stops the division cycle and kills itself. This 
self-induced destruction or programmed cell death is called 
as apoptosis. However, at times cells lose ability to kill them­
selves and their uncontrolled cell division forms a tumor po­
tentially. Thus any dysfunction or deregulation in apoptosis 
process leads to cancer. Cancer is a term for diseases in which 
abnormal cells divide without any control and have the abil­
ity to invade nearby tissues and can spread through the blood 
stream and lymphatic system to other parts of the body. Here 
arises a need to suppress the fast and uncontrolled cell divi­
sion: one way is to forcefully induce apoptosis.

To this end, many cancer treatments are developed in­
cluding radiation therapy, chemotherapy, and immunotherapy 
to kill the cells by apoptosis or necrosis. At this point, it is de­
sirable to have a technique that can detect apoptotic regions in 
an organ or tissue which is undergoing cancer treatment (e.g.,
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chemotherapy) in order to ascertain the success of the treat­
ment. At present, the evaluation of the cancer therapy is usu­
ally done by physical examination, assessing tumor shrink­
age, and less frequently by imaging. This is usually done 
only after the patient undergoes the complete treatment cy­
cle, which takes few weeks or months. There is an increasing 
need for a rapid therapy detection technique.

Various techniques (both invasive and non-invasive) have 
been developed to determine whether the cells are undergo­
ing apoptosis. Biological techniques developed are invasive 
and time consuming as well. For example, Positron Emission 
Tomography (PET) though non-invasive, requires the injec­
tion of radioisotopes into the body and hence scans cannot 
be performed repetitively. Other optical imaging methods us­
ing bioluminescence markers, though non-invasive, lack pen­
etration depth. It has been shown that high frequency ultra­
sound (HFUS) imaging in the range of 20-60 MHz can be 
used to detect the structural changes during the cell death [1].
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HFUS imaging has become a powerful clinical tool and has 
proved especially valuable in ophthalmology. It has several 
advantages: it is non-invasive, non-ionizing, provides fine- 
scale resolution (especially for small animal anatomy), cost 
effective, safe and could be used to detect and identify a wide 
variety of abnormal tissues.

A series of structural changes occur within a cell during 
cell death. During apoptosis there is cell and nucleus shrink­
age, condensation of chromatin in the nucleus, and eventual 
nuclear fragmentation. Studies over the past decade have 
found that the HFUS (20-100 MHz) can be used to detect 
localized variations in cell morphologies in tissues and cell 
ensembles [1,2]. It is shown in [2] that ensembles of necrotic 
(heat killed), cells undergoing mitosis, and apoptosis yield an 
increased backscatter ultrasound signal intensity compared to 
cells not exposed to the drug. US backscatter signals from 
normal and apoptotic acute myeloid leukemia (AML) cell 
pellets are shown in Figure 1. Spectral analysis techniques 
have been used to analyze radio frequency (RF) echo signals, 
and have made it possible to more specifically characterize 
average cell structure changes in tissues and cell ensembles. 
However, to increase the technique sensitivity and specificity, 
other signal analysis techniques are explored.

Farnoud [4], using Burg-lattice based autoregressive 
(AR) modeling successfully classified 100 backscatter sig­
nals from normal and apoptotic cells using machine-learning 
algorithms with a classification accuracy ranging from 50%- 
97 % with different classifiers. It was shown that non-linear 
classifiers such as probabilistic neural networks with sigmoid 
activation function provided the best accuracy. Bejar [5] 
could monitor apoptosis by using cepstral coefficients (de­
rived from AR coefficients) as features and local discrimi­
nant bases (LDB) algorithm. This work used 39 signals of 
the normal group and 36 signals of the abnormal group and 
achieved an overall classification accuracy rate of above 90%. 
Reflection coefficients, the parameters of the lattice filter, pro­
vide an alternative parameterization of signals. The reflec­
tion coefficients are computed from AR coefficients by using 
Levinson’s recursions. There is a non-linear relation between 
these two coefficients. In this work we explore whether the 
reflection coefficients can potentially be used as signal fea­
tures for the classification. With this motivation, we intend 
to find whether reflection coefficients may contain useful in­
formation about the US backscattered signal in such a way 
that the classification of the normal and apoptotic signals can 
be done by using simple and efficient time-domain pattern 
analysis approaches. To the author’s best knowledge, this is 
the first study exploring the use of reflection coefficients for 
a biomedical signal classification application.

The block diagram of the proposed system is shown in 
Figure 2. The US backscattered signals are analyzed by using 
lattice prediction error filter parameters called reflection co­
efficients as features and classified by using simple classifier 
based on maximum likelihood method. The paper is struc­
tured as follows: Section 2 details the lattice prediction error 
filters, different algorithms to compute reflection coefficients 
including the Burg-lattice method. Results are discussed in
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Section 3, and conclusions are given in Section 4.

2 METHODOLOGY

2.1 Lattice Prediction Error Filter

The objective of a linear prediction filter is to select a linear 
function that minimizes the prediction error for the given data 
set. When the predictor is embedded in the linear filter, the 
predictor can be viewed as linear filtering and is called as 
prediction error filter (PEF).

The PEF is defined as a structure, which combines suc­
cessive samples of a signal multiplied by coefficients, so that 
the output (prediction-error) power of the filter is minimized. 
There are two kinds of PEF, depending on the form of pre­
diction error utilized. Based on a given sequence of input 
samples, a forward PEF is designed to minimize the mean- 
square value of the forward prediction error, defined as the 
difference between the predicted value of the input one step 
into the future and its actual value. On the other hand, a back­
ward PEF is designed to minimize the mean-square value of 
the backward prediction error, defined as the difference be­
tween the predicted value of the input one step into the past 
and its actual value.

Two basic adaptive filtering implementation schemes of 
the prediction error filter are the tapped-delay-line (TDL) 
structure, which is adapted by minimizing a single, global 
error criterion, and lattice structure, in which the error is min­
imized independently for each stage of the filter. Depending 
on the form of calculation used, the PEF may suffer from 
lack of numerical stability. The lattice PEF, a form of adap­
tive filter, proposed by Burg [6] and independently derived 
by Itakura and Saito [7] provides a solution to these prob­
lems. Lattice-structure has a number of advantages [8] over 
the traditional TDL structure, among which are better resolu­
tion and/or stability, much better control of the filter conver­
gence and adaptive properties (due to the orthogonalization 
of the data provided by the lattice, the adaptive convergence 
rate appears to be particularly insensitive to the conditioning 
or eigenvalue spread of the input signal sequence), the stage 
by stage approach to the estimation problem provided by the 
lattice filter offers the possibility of determining the optimal 
model order for the process. The sensitivity of the lattice filter 
parameters to round off noise and finite word length effects, 
particularly in the normalized algorithms, seems to be less 
than that of the equivalent TDL processor. Some important 
characteristics of the lattice filters are [9]:

1. It is an efficient structure for generating simultaneously 
the forward and backward prediction errors.

2. The lattice structure is modular: increasing the order of 
the filter requires adding only one extra module, leaving 
all other modules and its associated filter parameters the 
same.

3. The various stages of a lattice are decoupled from each 
other in the following sense: The memory of the lattice 
(storing b0 ( n  — 1 ) , bm - \ ( n  — 1)) contain orthogonal
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Figure 1: (a) Normal signal and (b) Apoptotic signal acquired from cell pellets.

variables, thus the information contained in u(n) is split 
in M  pieces, which gradually reduces the redundancy of 
the signal.

The lattice structure, with superior flexibility and structural 
diversity find use in applications such as predictive filtering 
[3], adaptive filtering [10], and speech processing [15]. The 
lattice form filter realization first attracted great attention in 
the late 1960s and early 1970s, with its superiority in finite 
precision performance. Itakura and Saito were the first re­
searchers who utilized this lattice form for speech coding.

2.2 Algorithms for computing reflection coeffi­
cients

Lattice filters are a well-known signal analysis and coding 
tool. Their parameters, the reflection coefficients, have a good 
robustness to noise and quantization effects [16]. In the lat­
tice formulation, the reflection coefficients can be computed 
by minimizing the norm of the forward residual or the back­
ward residual, or a combination of the two. There are several 
methods to calculate the reflection coefficients of a lattice fil­
ter [11]. These methods depend on different ways of correlat­
ing the forward and backward residuals. A brief description 
of four of these algorithms is given below:

The common basic objective of all the algorithms men­
tioned is to minimize the mean-squared forward and back­
ward errors, which are the outputs of each filter stage. In 
other words, to obtain the lowest values of Fi (n) and Bi(n), 
defined in the following equations:

Fi(n) = E  \fi(n

Bi(n) = E  \bi(

(1)

(2)

where f i (n) is the forward residual, bi (n) is the back­
ward residual and E( .) denotes the expected value.

Differentiating these quantities with respect to the reflec­
tion coefficient gives two values for the coefficient, by min­
imizing the forward and backward mean square errors sepa­
rately. The equation

PF(n) =
C i- i (n )  

B i - i ( n  -  1)

minimizes the forward error, and

(n) =
C - i ( n )

F i- i (n )

(3)

(4)

minimizes the backward error where Ci (n) is the expec­
tation of the negative cross-power of forward and backward 
errors, given by

C \ - 1(n) = - E  [fi(n) . b*(n -  1)] (5)

2.2.1 Forward-and-Backward (F+B) Algo­
rithm

This is the most direct method suggested by Griffith [9] and 
is the only algorithm where the forward and backward reflec­
tion coefficients are not complex conjugates of each other. It 
simply uses pf  (n) and pb (n) as the forward and backward 
reflection coefficients respectively, i.e.,

Pf  (n) = PF (n)

P \(n )=  pB (n)

(6)

(7)

As pF . (pB)* = 1 in almost all cases either or will be 
greater than one, however, the reflection coefficients should

2n
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Figure 2: Block diagram of the proposed system

have a value less than one for a stable filter. Hence, the sta­
bility is not guaranteed.

2.2.2 Forward/Backward-Minimum (M) Al­
gorithm

This algorithm provides an alternative to the F+B algorithm 
by following the rule that if either pF (n)or p f  (n) is greater 
than one, then the other will be less than one and hence guar­
antees stability. This algorithm is suggested by Makhoul [13], 
and is formulated as

P i (n) = Pi (n
C i- i(n)

max [Fi - i(n), B i - i(n  — 1)]

Pi(n) = [Pi1 (n)]

(8)

(9)

2.2.3 Geometric-Mean (G) Algorithm
This algorithm is one of the two joint estimation algorithms 
that try to minimize the forward and backward error expecta­
tions jointly and is derived by Itakura and Saito [7]. Here, the 
reflection coefficients are computed by using the geometric 
mean of the forward and backward error expectation.

p {(n) = P?(n) =
Ci-i(n)

[F i - i (n ) . B i - i ( n  — 1)] 1/2

Pi(n) = [p?(n)X

(10)

(11)

2.2.4 Burg Algorithm
Burg method is an order- recursive algorithm and was intro­
duced by J.P. Burg in 1967 [6]. This method uses a lattice fil­
ter and directly estimates reflection coefficients instead of au­
tocorrelation values. The algorithm is sometimes designated 
as maximum entropy method because of its derivation in the 
context of maximum entropy methods. The key step in the al­
gorithm involves minimizing the sum of the norm of the for­
ward and backward residual vectors, as a function of the re­
flection coefficient matrices. Since the computed coefficients

are the harmonic mean between the forward and backward 
partial autocorrelation estimates, the Burg procedure is also 
known as the Harmonic algorithm. This algorithm starts with 
a first-order model and computes the prediction parameters 
(reflection coefficients) for successively higher model orders. 
The ith  reflection coefficient is a measure of the correlation 
between y(n)  and y(n — i) after the correlation due to the in­
termediate observations y(n — 1),...., y (n — i +  1) has been 
filtered out. As the recursion constrains the filter poles to fall 
within the unit circle stability of the filter is gauranteed. The 
Burg method is particularly useful for estimating coefficients 
from segments of unequal length. This method is based on 
Levinsons recursions and estimates the AR filter parameters 
through the associated reflection coefficients constraining the 
AR coefficients to satisfy Levinson equations.

Lets assume the data measurements (US backscattered 
signals) be {y(n)}  for n  =  0 ,1 ,2 ,..., N  — 1 and let us con­
sider the filter of order M .

The equations of the Burg-lattice filter are:

fo(n) = bo(n) = y(n) (12)

f i (n)  = f i - i ( n )  + kib i- i(n  — 1), 1 < i < M  (13)

bi(n) = k i f i - i (n )  + b - i ( n  — 1), 1 < i < M  (14)

The corresponding ith reflection coefficient ki is ob­
tained by minimizing the sum of the square values of the for­
ward and backward prediction errors at the output of the ith 
stage.

— E n f i -1 (n)bi-1 (n — 1)

E n  \ f i - i (n ) \2 + \bi- i(n — 1)\2
(15)

As the Burg algorithm uses lattice structure, it inherits 
the advantages of lattice structure such as stability, modular­
ity, computational simplicity and efficiency. Besides these,

*

k
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Figure 3: Burg-lattice Filter (adapted from [18])

it is proven to be an efficient linear prediction technique and 
is probably the most widely known method to estimate AR 
coefficients. Considering the advantages of Burg-lattice al­
gorithm, in this work its reflection coefficients are used for 
parametric feature representation of the ultrasound backscat- 
ter signals. We also experimentally checked the time invari­
ance property and robustness of the reflection coefficients of 
the Burg algorithm. In time invariance test, reflection coeffi­
cients of an apoptotic signal and its delayed version (0.2 mi­
cro seconds) are calculated. From Table 1 it can be demon­
strated that the reflection coefficients are time invariant as the 
value of the reflection coefficients are same. In robustness 
test, an apoptotic signal is corrupted with random noise. The 
reflection coefficients for both apoptotic and noisy apoptotic 
signals are calculated. Then a measure of closeness of the two 
sets of reflection coefficients is calculated by using the corre­
lation coefficient function. Table 2 shows the correlation co­
efficients obtained for different signal to noise ratio(SNR)s. 
The reflection coefficients are identical for a SNR of 30 dB 
and show strong correlations for lower SNRs (> 9dB).

2.3 Data Acquisition

AML-5 cells (at Ontario Cancer Institute) were cultured in al­
pha minimum essential medium (alpha MEM, Gibco 11900), 
supplemented with Streptomycin and Penicillin at concentra­
tions of 100mg/L, and 5 % Fetal Bovine serum ( Hyclone). 
The cells grew in 150ml of medium as a suspension, at con­
centrations of 5x105 cells/ ml, in a 370C, and 5% CO2 in­
cubator [19]. Pellets were made with untreated cells and 
treated cells. Treated cells were exposed to 10ug/ml cisplatin, 
a chemotherapeutic agent for 24 hours, to induce apoptosis, 
before processing to form a pellet. Large volumes of the 
treated and untreated cells were concentrated by centrifuga­
tion, at 2000rpm for 10 minutes, using a Sorval centrifuge. 
The cell concentrations were then determined and volumes 
prepared in phosphate-buffered saline, so that the final pel­
lets would have the desired percentages of the treated and un­
treated cells. The final pellets for scanning were centrifuged

at 3000rpm/ 10 minutes, in flat bottom cryo-tubes on a desk­
top swinging bucket centrifuge. The cell pellets were then 
immersed in phosphate-buffered saline that acted as a cou­
pling medium for the ultrasound imaging and RF data col­
lection. During the data acquisition process, the cells were 
kept at room temperature. The experimental set consists of 
a pellet of the normal or untreated AML cells (which are not 
exposed to cisplatin drug), and different mixtures of treated 
and untreated cells. The mixtures of cells varied from 5% 
treated cells mixed with 95% untreated to 100%treated cells. 
The cells are imaged as a function of concentration of treated 
cells (5, 10, 20, 80 and 100%). A 40 MHz f2 transducer with 
a bandwidth of approximately 100% was used to image the 
pellets of normal and apoptotic cells. The transducer was at­
tached to the VS40B ultrasound imager (Visualsonics Inc., 
Toronto, ON, Canada) which has the ability to select regions 
of interest (ROI) from the B-scan images and store the raw RF 
backscattered data of the ROI. The RF data was digitized at 
500 MHz sampling rate and stored for further analysis. Data 
analysis was performed in MATLAB (The Mathworks Inc., 
Natick, MA, USA). The experimental data were obtained in 
Princess Margaret Hospital, Toronto, Canada. Experimental 
details on the data acquisition can be found in [17].

2.4 Feature Extraction and Classification

The experimental ultrasound backscatter signals, like many 
other biomedical signals could be non-stationary. They are 
segmented into stationary segments in order to apply stan­
dard signal processing techniques such as parametric analy­
sis. In the present work, manual fixed segmentation method 
is used. In the B-scan image as shown in Fig. 4, a small 
portion of about 1 mm at the centre of the image (0.5mm 
above and below the focal line of the transducer) is selected 
as the segment. The segment length is of 650 samples. The 
stationary (quasi-stationary) segments are then given to the 
lattice prediction error filter and the reflection coefficients are 
obtained by using the Burg-lattice algorithm. These reflec­
tion coefficients (partial correlation coefficients) are assumed
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k o -0.9459 0.9215 0.1836 -0.2651 -0.0626

kd -0.9459 0.9215 0.1836 -0.2651 -0.0626

Table 1: Reflection coefficients of original and delayed apoptotic signal. ko represents reflection coefficients of original 
apoptotic signal and k d represents reflection coefficients of the delayed

SNR (in dB) 0 3 6 9 12 15 18 21 24 27 30
Correlation
Coefficients

0.30 0.38 0.46 0.54 0.65 0.76 0.85 0.91 0.95 0.97 1.00

Table 2: Correlation coefficient values of the original apoptotic signal and corrupted apoptotic signal with random noise 
at different SNRs

Figure 4: Segmentation The central line indicates the fo­
cal line of the transducer and the rectangle indicated the 
selected region of the image.

to have the discriminant statistical information of the signals 
and were treated as features. Model order selection is im­
portant. With appropriate number of poles, it is possible to 
reconstruct the signal. Typically, model order is twice the 
number of spectral peaks of the signal. In this work, the peaks 
were between 5 and 7. Hence model order of 15 is selected. 
A snapshot of reflection coefficients of normal and apoptotic 
signal after 24 hours with a model order 15 is given in the 
Fig. 5.

Pattern classification is the next step after feature extrac­
tion in the pattern recognition process. As indicated in [14] 
the four best-known approaches for pattern recognition are: 
1) template matching, 2) statistical classifications, 3) syntac­
tic or structural matching, and 4) neural networks. In statisti­
cal pattern recognition, each pattern is represented by a set of 
d features i.e., viewed as a d dimensional vector. When little 
prior knowledge about the patterns to be recognised is known, 
the best suitable design for the pattern recognition system is 
to use training or a learning procedure. The classification is 
operated in two modes: training (learning) and testing (clas­
sification). The classifier is first trained with the derived fea­
tures and then tested. Standard statistical classification meth­
ods use descriptive parameters and distance measures using
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probablistic approaches. There are several distance measures 
that could be used [5]: Euclidean distance measure, maxi­
mum likelihood measure, Mahalanobis distance measure, and 
weighted distance measure. In this present work, the classifi­
cation of the ultrasound signals was done by using the max­
imum likelihood method as it most closely approximates the 
Bayes classifier and obtains the best discriminative efficiency 
if the probability density function of the extracted features are 
multivariate Gaussian [5,14].

The classification accuracy is estimated by using leave- 
one-out (LOO) method, one of the most popular validation 
techniques. The LOO method is known to provide least bias 
estimate [14]. In this method, one sample is excluded from 
the dataset and the classifier is trained with the remaining 
samples. Then the classification accuracy is determined by 
testing the classifier with the excluded sample. This is re­
peated for all samples of the dataset. An independence be­
tween the test and the training set is maintained as each sam­
ple is excluded from the training set. The reference database 
consists of two template reference vectors (one for normal 
and the other for apoptotic signals). A test signal is extracted 
from the database, the distance between the test signal and 
the group of reference is measured. The test signal belongs to 
the group which has less norm.

3 RESULTS AND DISCUSSION

Each pellet data consists of 43 RF lines collected from a 
40 MHz transducer. As mentioned before, the ultrasound 
backscattered signals from untreated cancer cells are termed 
as normal signals and those from the cancer cells treated with 
chemotherapeutic agent (which induces apoptosis) are termed 
as apoptotic signals. The treated cancer cells are imaged as 
a function of concentration of treated cells (5, 10, 20, 80 and 
100%). The aim is to classify the signals at different concen­
trations of the treated cells. Statistical analysis of the signals 
helps in extracting the discriminative features.

All the signals from a database are fed as input to the 
Burg-lattice filter. The corresponding reflection coefficients 
are extracted as features. The classifier is trained with the 
extracted features and tested with an unknown signal. The 
classification results are tabulated. We compared the results 
obtained by using reflection coefficients as features with the 
results obtained by using AR coefficients and cepstral coeffi-
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Figure 5: (a). A snapshot of reflection coefficients of signal from normal cells with a model order 15 and (b). A snapshot 
of reflection coefficients of signal from apoptotic cells (after 24 hours of exposure to cisplatin) with a model order of 15.

% of treated 
cells in pellets

Accuracy rate of 
Normal Signals in
%

Accuracy rate of 
Apoptotic Signals 
in %

Overall classifi­
cation accuracy in
%

RC AR Ceps RC AR Ceps RC AR Ceps
5 100 83.72 95.35 100 88.37 97.67 100 86.05 96.51
10 100 88.37 97.67 100 90.69 100 100 89.54 98.83
20 97.67 83.72 88.37 97.67 86.05 90.70 97.67 84.88 89.54
80 100 88.37 97.67 100 97.67 100 100 93.02 98.83
100 100 88.37 97.67 100 95.35 100 100 91.86 98.83

Table 3: Classification accuracy with model order 15. RC-reflection coefficients, AR- autoregressive coefficients and 
Ceps-cepstral coefficients

cients as features. The percentage represents the number of 
signals classified accurately. The overall classification repre­
sents the number of normal and apoptotic signals classified 
accurately.

Tables 3 show the classification accuracy rates obtained 
by comparing the normal signals with apoptotic signals at 5, 
10, 20, 80, and 100 % concentrations with a model order of 
15. The classification accuracy rates indicate that the relfec- 
tion coefficients provide the best classification of ultrasound 
backscattered signals. The cepstral coefficients give better 
performance than the AR coefficients. The reason could 
be the following discussion. AR coefficients gives a rela­
tively abstract form of feature representation. However, cep- 
stral coefficients are well suited for signals that contain echos 
of a fundamental signature (ultrasound backscatter could be 
cosidered as a signal resulting from a convolution of the pulse 
sent (fundamental signature) with the scattering strength of 
the scatterers) and hence may be better than AR. On the other 
hand, reflection coefficient is also an abstract parameter and 
for signals with reflected components, it might do a better 
feature representation. The better performance may be due to 
higher discriminant information being present in the derived

reflection coefficients from the ultrasound backscattered sig­
nals from the normal and the apoptotic cells

4 CONCLUSIONS

In this paper we evaluated the accuracy of lattice filter pre­
diction coefficients to differentiate the ultrasound backscatter 
signals from normal and apoptotic cells which differ in their 
intensity and frequency spectrum. This is the first work in 
biomedical signal analysis, in which reflection coefficients 
are used for parametric signal analysis and classification. 
The positive results, demonstrate the potential discrimina­
tory ability by using reflection coefficients as features and 
are worth studying. Modularity, the main advantage of lat­
tice structure, will make hardware implementation straight 
forward. From a practical perspective, the lattice provides 
an efficient, fast, modular and robust structure suitable for 
hardware implementation and hence it can widen the scope 
of research on the use of reflection coefficients.

Although this work has been focused mainly on eval­
uating the reflection coefficients to contain discriminant in­
formation about normal and apoptotic signals, further work 
on this “hardware-friendly” DSP technique will be aimed at
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evaluting the performance of reflection coefficients by testing 
with a larger database in real-time. Successful real-time per­
formance will allow to reach the ultimate goal ie., hardware 
implementation and even extend its applications in analyzing 
other biomedical signals.
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