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The 2-D nonlinear standing wave equation can be written in 
the conservative form as,

1. i n t r o d u c t i o n

In the recent years linear and nonlinear standing acoustic 
waves in one-dimensional (1-D) and two-dimensional (2-D) 
resonators have been extensively investigated numerically, 
mathematically and experimentally.1-3 To establish acoustic 
standing wave, we need a chamber and a vibrator. In all of 
the previous study, the vibrator of the acoustical resonator 
was assumed to be a constant shape vibrating piston. 
However, in the real applications different shape of the 
vibrator may be used to excite the resonator. In the present 
study the objective is to numerically analyze the effects of 
different shape of the vibrator on the pressure and velocity 
profile in 2-D nonlinear standing wave resonator.
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2. METHOD

The wave equation for high-amplitude nonlinear acoustic 
waves in a thermo-viscous fluid is derived from the basic 
equations of fluid mechanics (continuity and Navier-Stokes 
equations) along with an appropriate state equation which 
can be written in 2-D as,
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In the above equations w and v are the velocity 
components, p is density, p  is pressure, c0 is small-signal 
sound speed, j  and j B are the shear and bulk viscosities, k  is 
the coefficient of thermal conduction and y=cp/cr is the ratio 
of specific heats at constant pressure and constant volume.

where v is the kinematic viscosity and b indicates the total 
effect of viscosity and thermal conductivity of the fluid as 
well as the wall absorption, and can be obtained as, 
b=2c03a/m2v, where, m = 2 f  and a is the total absorption 
coefficient which is the sum of thermoviscosity absorption 
coefficient and wall absorption coefficient.4 a is expressed 
as a= a„,+ awa„, where,

atv ~  +  2k t )
( 1 j and Pr=jcpK is the Prandtl number .
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Eq. 6 is an unsteady nonlinear equation and must be 
solved using an appropriate numerical scheme and initial 
and boundary conditions. Combination of a second-order 
finite difference scheme and a second-order Runge-Kutta 
time stepping scheme provides an accurate and fast-solver 
numerical model which can predict pressure, particle 
velocity and density along the highly nonlinear standing 
wave resonator filled with a thermoviscous fluid with no 
restriction on the nonlinearity level and the type of fluid. 
The fluid is assumed to be initially at rest and excited by the 
harmonic motion of a diaphragm at x=0 at the frequency f  
(see Fig. 1). Assuming L and H  to be the length and width 
of the tube, respectively, the following initial and boundary 
conditions are applicable,

u(0, y , t)=G(y, t) , u(L ,y ,t)  =  v(x, 0, t) =  v(x, H , t) 

uy(x ,0 ,t)=uy(x ,H ,t)  =  ^ (0 , y,t) =  vx(L ,y ,t)  =  0. 

Px(0,y,t)=px (L ,y ,t)  =  py(x ,0 , t ) =  py(x, H, t) =  0, 

u(x, y, 0)=v(x, y, 0) =  0 , p(x, y, 0) =  p0.

=  0 ,
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where 0<x<L, 0<y<H and G(y,t) represents shape and time- 
dependent excitation function of the diaphragm.

3. NUMERICAL RESULTS

To investigate the effects of the diaphragm shape on the 
pressure and velocity waveforms of an acoustic resonator, 
three different shapes are considered for the diaphragm 
which are, constant shape vibrating piston, circular shape 
and cosine shape, hereinafter referred to as cases A, B and 
C, respectively. These three shapes are illustrated in Fig. 1, 
where, u0 is maximum velocity of the diaphragm. All 
simulations are conducted in air at 25oC with the following 
thermo-physical properties, c0=343.4 m/s, p 0=1.2 kg/m3, 
v=1.84x10"5 N.s/m2, jmb=0.6xjm and y= 1.401. The frequency 
of the diaphragm is set equal to 1 kHz for all cases.

Fig. 2 depicts the variations of pressure and particle 
velocity over one standing wave period for u0 equal to 0.1 
and 10 m/s for cases A, B and C. At u0=0.1 m/s, standing 
wave inside the resonator is linear, whereas, at u0=10 m/s, 
the standing waves is nonlinear. As shown in Fig. 2, the 
shapes of the pressure and particle velocity are the same for 
the different shapes of the vibrator. However, the maximum 
amplitudes of pressure and velocity vary with the shape of 
vibrator. For the same maximum vibrational velocity of the 
diaphragm, the amplitudes of the pressure and velocity for 
constant shape vibrating piston are largest and for cosine 
shape are smallest.
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F ig u re  1: Schematic of the model.
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