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1. i n t r o d u c t i o n

This paper describes a Bayesian approach to matched-field 
geoacoustic inversion, with emphasis on rigorous 
uncertainty estimation [1]—[3]. In a Bayesian formulation, 
the unknown geoacoustic model parameters are considered 
to be random variables constrained by the data and prior 
information, and the goal is to interpret the multi
dimensional posterior probability density (PPD). The 
approach is developed and illustrated for a shallow-water 
test site in the Mediterranean Sea.

Cij = {(mi - m )(mj - Mj)P(m | d)dm.

For nonlinear problems, such as geoacoustic inversion, 
analytic solutions to the above optimization and integrations 
are not available, and numerical methods must be employed. 
Hybrid algorithms, such as adaptive simplex simulated 
annealing [1], which combine global and local methods, 
have proven effective for optimization. Integration can be 
carried out using Markov-chain Monte Carlo importance 
sampling methods, such as fast Gibbs sampling [2].

2. THEORY

Let m and d represent the model and data vectors, 
respectively, with elements considered random variables 
that obey Bayes rule, which may be written

P(m  | d) «  L(m, d)P(d).

In the above equation, P(m|d) represents the PPD which 
quantifies the information content for the model parameters 
given both data information, represented by the likelihood 
function L(m,d), and prior information P(m). The likelihood 
can typically be written L(m, d) «  exp[-E(m, d)], where E 

represents an appropriate data misfit function (considered 
later). The PPD can be written

P(m  | d ) =
exp[-^(m, d)]

{exp[-^(m ', d)] dm'

where the integration spans the parameter space and the 
generalized misfit, including data and prior, is given by

^(m, d) = E(m, d) -  ln P(m).

The multi-dimensional PPD is typically characterized in 
terms of parameter estimates, uncertainties, and inter
relationships, as given by the maximum a posteriori (MAP) 
model, mean model, marginal probability distributions, and 
covariance/correlations defined

m = ArS max !P(m | d)l

m = jm  P(m | d) dm

P(mt | d) = jS(mi -  m') P(m ' | d) dm'

The data uncertainty distribution, which defines the 
likelihood function, must include both measurement errors 
(e.g., additive noise, instrument uncertainties) and theory 
errors (due to the simplified model parameterization and 
inexact theory). Since data uncertainties are generally not 
well known a priori, physically reasonable assumptions are 
required about the form of the distribution. In many 
practical cases, lack of specific knowledge of uncertainties 
suggests a simple distribution (e.g., Gaussian) be assumed 
with statistical quantities estimated from the data.

Let the complex acoustic pressure fields measured at an 
array of N  sensors and F  frequencies be given by d = {df, 
f=1,F}. Assuming the data errors are complex, circularly- 
symmetric, zero-mean Gaussian-distributed random 
variables which are uncorrelated from frequency to 
frequency but potentially correlated spatially with data 
covariance matrix Cf at the f h  frequency, the likelihood 
function is given by

F

L(m,d) « ^  exp{[d-  Af e°f df (m)]TC-1 [d - Af e Sfdf  (m)]}
f  =1

where T  indicates conjugate transpose, dfm ) is the modeled 
acoustic pressure, and Af  and Of represent the unknown 
source spectrum. Maximizing the likelihood with respect to 
Af  and Of leads to

{ F
- ^  df C- d f

f =i

f / d  f (m) |2

| dT (m)C;'d f (m ) |}.

The data covariance matrices C f  are generally not known a 
priori, but can be estimated from the autocovariance of the 
data residuals (difference between measured data and data 
computed for the MAP model estimate, applying maximum- 
likelihood source spectral estimates), under the assumption 
of ergodicity [3]. The validity of the covariance estimates 
and the assumption of Gaussian error processes can be 
examined by applying statistical tests to the data residuals,

Canadian Acoustics / Acoustique canadienne Vol. 35 No. 3 (2007) - 178

mailto:sdosso@uvic.ca


standardized by the Cholesky decomposition (square root) 
of the inverse covariance matrix. For instance, the runs test 
can be applied to examine whether the estimated covariance 
matrices successfully decorrelates the residuals, and the 
Kolmogorov-Smirnov (KS) test can be applied to examine 
the Gaussianity of the residuals [3].

3. RESULTS

The geoacoustic experiment was carried out by the 
NATO Undersea Research Centre in the Mediterranean Sea 
off the west coast of Italy near Elba Island. The experiment 
consisted of recording acoustic signals from a transducer 
towed at approximately 12-m depth over a track with nearly 
range-independent bathymetry (water depth ~ 13 2 m). The 
source emitted a 0.5-s linear frequency-modulated signal 
over the band 300-800 Hz every 0.25 km. The signals were 
received at a bottom-moored vertical line array (VLA) of 48 
hydrophones which spanned from 26-120-m depth with 2-m 
sensor spacing. The data set analyzed here consisted of 11 
frequencies at 50-Hz intervals from 300-800 Hz recorded 
for a source-receiver range of approximately 3.85 km.

The experiment and the environmental and geometric 
parameters included in the model m are illustrated in Figure 
1. The acoustic source is at depth z and range r from the 
VLA in water of depth D. The geoacoustic parameters 
include the thickness h of an upper sediment layer with 
sound speed cs, density ps, and attenuation as, overlying a 
semi-infinite basement with sound speed cb, density pb and 
attenuation ab. The SSP is represented by four unknown 
sound speeds c1-c4 at depths of 0, 10, 50, and D m.

The Bayesian inversion applied bounded uniform prior 
distributions for all parameters. Wide bounds were applied 
for the geoacoustic parameters to limit the inversion to 
physically reasonable values but allow the acoustic data to 
determine the solution. For the SSP parameters, the bounds 
were ±4 m/s about the measured sound speeds, representing 
calibration uncertainty and the effects of spatial and/or 
temporal variability. For the geometric parameters (D, r, z), 
the bounds represent small corrections due to imprecise 
knowledge of these experiment parameters.

cb pb ab Basement

Fig. 1. Experiment geometry and model parameters.

Due to space limitations, inversion results are shown here 
only in terms of parameter marginal distributions (Figure 2). 
With the exception of the basement density, the geoacoustic

parameters are generally well determined, with the sediment 
thickness and basement sound speed particularly well 
resolved. The SSP parameters are less well determined, due 
to strong inter-parameter correlations (not shown). The 
geometric parameters are distributed near their nominal 
values. The KS test indicated no significant evidence against 
the assumption of Gaussian-distributed error processes, 
while the runs test suggested that the estimated data 
covariance matrices accounted for much, but not all, of the 
data error correlations.
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Fig. 2. Posterior Marginal probability distributions.
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