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1. i n t r o d u c t i o n

Nowadays, noise and vibrations control is a major concern 
in several industry fields such as aeronautics and 
automobile. The reduction of noise and vibrations is a major 
requirement for performance, sound quality and customer 
satisfaction. Passive damping technology using viscoelastic 
materials is classically used to control the vibration. The 
steel industry proposes damped sandwich panels with thin 
layer of viscoelastic core (Metal/Polymer/Metal). This type 
of structures has appeared recently as a viable alternative to 
classical add-on or spray-on treatments. It has been shown 
that this class of materials enables manufacturers to cut 
weight and cost while providing noise, vibration and 
harshness performance. This motivated the development of 
prediction methods for their vibration and acoustic 
indicators. Initially, analytical techniques were developed to 
predict the performance of damped sandwich panels with 
classical boundary conditions. The fundamental work in this 
field was pioneered by Ross, Kerwin and Ungar (RKU) [1] 
who used a three-layer model to predict damping in plates 
with constrained layer damping treatments. Kerwin [2] was 
the first to present a theoretical approach of damped thin 
structures with constrained viscoelastic layer. He presented 
the first analysis of the simply supported sandwich beam 
using a complex modulus to represent the viscoelastic core. 
Several authors (DiTaranto [3], Mead and Markus [4]) 
extended Kerwin’s work using his same basic assumptions. 
Six-order equations of motion were developed in term of 
axial displacements by DiTaranto [3] for the unsymmetrical 
three-layer beam, and this was subsequently refined [4]. 
However, these analytical solutions are only appropriate for 
simple structures such as beams or plates with simple 
boundary conditions. In practice it is often necessary to 
design damped structures with complicated geometry, 
complex loadings and non-uniform features such as material 
discontinuities. Consequently, it is natural to consider the 
finite element method (FEM) to represent correctly the 
physics of such complicated problem. However existing 
finite elements methods necessitate the use of plate-solid- 
plate models which are computationally expensive.

In this paper a new sandwich finite element model has been 
developed. It allows for both symmetrical and 
unsymmetrical configurations. The rotational influence of 
the transversal shearing in the core on the skins behaviours, 
ensure a displacements consistency over the interfaces

between the viscoelastic core and the elastic skins; thus 
resulting in an accurate representations of the physics. 
Validation examples, consisting on sandwich structure with 
various geometrical and mechanical behaviours, have been 
conducted to demonstrate the validity and accuracy of the 
developed element to (i) estimate the modal resonances; (ii) 
the frequency response functions and (iii) the damping loss 
factors. Validations were performed versus both analytical 
and classical Finite elements models using MSC/Nastran® 
(Nastran).

2. f i n i t e  e l e m e n t  f o r m u l a t i o n

The displacement field of the skins is based on the 
Love-Kirchhoff’s assumptions but is corrected to account 
for the rotational influence of the transversal shearing in the 
core. The Mindlin model is used to describe the 
displacement field of the core. The rotation effects of the 
transversal shearing in the core as well as the bending of the 
panel are described by the rotations yx and yy angles and the 
transversal displacement w.
The displacements fields of each of the three layers are 
written as follows:

\U1 = U20 -  zOx + z2Wx \U2 = U20 -  zOx + z V x \ U3 = U20 -  zOx + z 3Vx 

i Vl = V20 -  z9y  + Z2Wy i V2  = V2 0  -  z9y  + Z ^ y  iV j  = V2 O ~ Z9y + Z j^ y

\W1 = W  [W2 = W [W3 = W

Where the following notations are used:

¥x= Ox + Yx and yy= 6y + yy

z2 and z3 are the distance between the reference axis and 

the lower and upper faces of the core, respectively..

The generalized displacements u is related to an elementary 
degrees of freedom vector q e witch contain four degrees of 
freedom per node in the case of the beam and seven for the 
plate. In the latter case, these are the transverse 
displacement w , the two rotations of the face sheets O and 
Oy, the two rotations related to the transversal shearing in the 
core y x and y y and the in-plane displacements u20 and v20 

of the middle planes of these face sheets. To account for the 
curvature, rotational degrees of freedom around the normal 
to the plan of the beam or plate are added. This result in 
nine degrees of freedom per node for both cases: u20? v20?

w, Ox, By, Oz, Wx. Wy. Vz.
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3. RESULTS

3.1 Sandwich ring

A damped sandwich ring of axial length b and a single point 
load applied in the radial direction is investigated in this 
example. Figure 1 and table 1 gives the associated 
dimensions and material properties. In the following, indices 
1and 3 refer to the skins and 2 to the core.

Table 1. Ring’s configurations and the material’s properties used 
for the numerical validation

R=0.1015835m; b=0.01m; h1=h3=1.52mm; h2=0.127mm
E1= E3 (Pa) 7.037 x 1010 E2 = 7.037 x 105 (Pa)
nu1= nu3 0.3 nu2 0.49
p1= p3 (kg/m3) 2770 p2 (kg/m3) 970
•^1=^3 .0001 ^2 .3

Figure 2 resents the comparisons between the present finite 
element model and a classical finite elements model using 
Nastran. The Nastran model uses solid finite elements for 
the core and shell finite elements (with offset option) for the 
skins. Excellent agreement is observed. Both the resonance 
frequencies and the resonance amplitudes of the first six 
modes are accurately estimated.

Frequency [Hz]

Fig. 2. Input mobility (dB) of a sandwich ring. Numerical 
validation: (—) finite element sandwich; (...... ) Msc. Nastran

3.2 Simply supported sandwich plate

This section compares the modal frequencies of free 
vibration predicted by an existing analytical solution [5] and 
finite element method (Nastran) [6], to those predicted by 
the developed element for a simply supported sandwich 
plate with symmetric isotropic aluminium skins and a 
viscoelastic core. The complex shear modulus of the core is

assumed constant over the frequency range. The geometrical 
and physical parameters of the plate are presented in Table2

Table 2. Plate’s configurations and the material’s properties used 
for the numerical validation.
Lx=304.8mm; Ly=348mm; h1=h3=0.762mm;h2=0.254 mm
E1= E3 (Pa) 6.89 x 1010 E2 = 2.67008 x 106 (Pa)
Nu1= nu3 0.3 nu2 0.49
p1= p3 (kg/m3) 2737 p2 (kg/m3) 999
•rç!=rç3 .0 ^2 .5

Table 3. Comparison of natural frequencies and loss factors of a 
symmetric sandwich with isotropic face-plates.______________

Analytical Nastran (10x12 
elements)

FES (10x12 
elements)

f  (Hz) Eta f  (Hz) Eta f  (Hz) Eta
1 60.3 0.190 57.4 0.176 58.24 0.171
2 115.4 0.203 113.2 0.188 114.44 0.191
3 130.6 0.199 129.3 0.188 130.44 0.189
4 178.6 0.181 179.3 0.153 176.96 0.168
5 195.7 0.174 196.0 0.153 196.59 0.165

Compared to the analytical results, it is observed that the 
present finite element (FES) is more accurate than 
NASTRAN for the same number of elements. This is 
corroborated by other tests. Moreover, a substantial savings 
in computation time is achieved. However, current 
challenges, fir using the new element to model real life 
applications, concerns in its interface with classical plate 
and solid elements.

4. CONCLUSION
A new sandwich finite element for laminated steels has been 
introduced. It allows for both symmetrical and 
unsymmetrical configurations. Validation comparisons of 
the presented approach versus analytical and numerical 
methods were presented. These studies show that the 
proposed element sandwich is accurate for the modeling of 
the studied laminated steels.
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