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1. INTRODUCTION

Damped multilayer structures such as flat panels are 
largely used in automotive and aerospace constructions. 
Most papers in the field treat isotropic structures1 with 
damped layers or patches in symmetrical or asymmetrical 
sandwich configurations. The increasing requirements of 
accuracy have encouraged important improvements1-3 in the 
modeling approaches. The industry development of new 
multilayer damped configurations (not necessarily of a 
symmetric sandwich nature) favors the use of general 
laminate models2. Moreover, the new iterative identification 
algorithms, used for the characterization of the viscoelastic 
materials’ dynamic properties, require a tremendous amount 
of computational effort3. These methods3 update 
successively the complex eigenvalues and eigenvectors until 
required accuracy is achieved. It is worth pointing out that 
accurate and fast numerical solutions are imperatives for 
such applications.

This paper describes the modeling of reasonably thick 
general composite laminate plates and beams with linear 
viscoelastic damping. The principal aim is the fast and 
accurate modeling of such structures for low to high 
frequencies. The problem is solved by discrete laminate 
method in a wave approach context. The discrete laminate 
approach assumes each layer described by a Reissner- 
Mindlin displacement field which leads to equilibrium 
relations accounting for membrane, transverse shearing, 
bending and full inertial terms. Each layer accounts for 
orthotropic plies orientations. The discrete description of 
each layer allows for accurate handling of thin/thick 
laminates and sandwich panels over the audible frequency 
range. In particular, at high frequencies the combination of 
(i) propagating wavelength characteristics (short 
wavelengths) and (ii) the layout’s physical properties 
(certain layers are much stiffer than adjoining ones) may 
result in decoupled out-of-phase movement of stiff layers. 
Such phenomena are correctly captured by the discrete 
laminate approach.

2. THEORY

This study deals with layouts of an unlimited number 
of composite and viscoelastic layers. Figure 1 represents the 
global geometrical configuration of a composite panel 
(Figure 1.a) and a composite beam (Figure 1.b) with side 
dimensions Lx and Ly and total thickness h. The layered 
construction is considered, in general, asymmetrical. The

origin of the coordinates system is defined on a reference 
surface passing through the middle thickness as represented 
in Figure 1.

Figure 1. Global geometrical configuration. Flat laminated composite 
panel (a), and laminated composite beam (b) of Lx and Ly side dimensions 
and h total thickness.

Membrane and bending displacements as well as 
shearing rotation are generally expected to act in each layer; 
the displacement field of any ith discrete layer of the panel is 
of Mindlin’s type.

The resultant stress forces and moments of any layer 
are defined in Ref. [5]. There are three interlayer forces 
along x, y, and z directions between any two layers. 
Consequently, the total number of interlayer forces is 

3(N— 1) where N  is the number of layers.

For any ith layer there are five equilibrium equations:
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Rotational inertia, in-plane, bending as well as 
transverse shearing effects are accounted for in each layer. 
Also, orthotropic ply’s directions are used for any lamina 
composing a layer. The expressions of the transverse shear 
stress forces Qi, the in-plane stress forces Ni, the inertial 
terms Ii, and the stress moments Mij of each layer are 
defined in Ref. [5].

2.1. Dispersion relation
For any layer, the dynamic equilibrium equations are 

rewritten using equations (1) with appropriate algebraic 

manipulations and has 5N+3(N—1) variables regrouped in a 

hybrid displacement-force vector (e ) . Next, the system is

expressed in the form of a generalized polynomial complex 
eigenvalue problem:

k2c [A, ] {e} — jk c[Ai] {e} — [A^] {e} — 0 ; (2)
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where, kc = J k 2t + k2 , j  = V - Î  and [Ao], [Ai], [A2] are real 

square matrices (in the absence o f damping) o f dimension 

5N +3(N -1) defined in Ref [5].

Relation (2) has 2(5N +3(N -1)) complex conjugate 

eigenvalues and represents the dispersion relations o f the 
laminated composite structure. The matrices in relation (2) 
become complex when viscoelastic layers compose the 
layout.

The pure arithmetically real solution with the highest 
amplitude corresponds, in the case o f thin isotropic 
structures, to the bending wavenumber. This solution has 
three asymptotical behaviors for sandwich configurations: 
pure bending at low frequencies, core’s transversal shearing 
at mid-frequencies and pure bending of skins at high 
frequencies.

In the following, the first propagative solution (of 
highest amplitude) is retained and used to illustrate 
applications of the proposed model. This propagative 
solution corresponds to transversal displacements motion 
(bending for the thin structures’ case) accompanied by in­
plane and transversal shearing internal deformations.

2.2. Equivalent loss factor
The propagating solutions and the associated 

eigenvectors o f the relation (2) are used to express the strain 
energy U n o f the hybrid problem. Next, the equivalent loss 

factor o f a panel or beam with N  layers, associated to the n th 

propagating wave is expressed as:
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where, the matrices A and B are given in Ref. [5].

Relation (3) compute the total damping loss factor o f a 
composite laminate as the average o f the angular 
distributions o f the damping loss factor over a quart o f the 
wavenumber space with respect to the heading directions.

2.3. Numerical results and validation
Examples o f comparisons to experimental and spectral 

finite elements results are presented and discussed in this 
section. Figure 2 presents the comparisons between 
experimental results6 and the present discrete laminate 
approach. Excellent agreement is observed. The resonance 
frequencies and the resonance amplitudes o f the first four 
modes are accurately estimated.

The next configuration concerns very thin laminated 
steel beam with a constrained viscoelastic layer, 
representative o f laminated steel used in automotives. 
Damping loss factor is computed using the present approach 
and spectral finite element model presented in Ref. [2], and 
the results are plotted in Figures 3. Excellent agreement is 
observed in Figure 3 between the analytical discrete 
laminate and spectral finite elements approaches.

Frequency (Hz)

Figure 2. Driving point mechanical impedance of a sandwich beam
(Sun and Lu6, Fig. 4.3, Pag.173). Experimental validation: (—) Discrete 
laminate; (oo) Experimental.

Figure 3. Damping loss factor of a cantilever sandwich beam.

3. CONCLUSIONS

The modeling o f thick composite laminated plates and 
beams with linear viscoelastic damping layers was 
described. A theoretical approach has been developed so as 
to fulfill a present need for fast and accurate numerical 
models generally dedicated to optimization and inverse 
characterization applications. The problem was solved by 
analytical discrete laminate method in a wave approach 
context. The model has been successfully validated with 
experimental and numerical results. Moreover, the model 
was applied to the calculation o f the structural loss factor 
associated to the bending wave-type.
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