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a b s t r a c t

This paper presents a method to detect and classify odontocete echolocation clicks as well as to estimate the 
number of animals that are vocalizing. A transient detector using the Page test [1-3] is used to extract the 
clicks: the click time, the click duration, the click amplitude and the spectral information of the clicks are 
extracted. A probability distribution over the species is assigned to each click, based on the spectral 
information of the click. The estimation of the number of animals is done using feature-aided multi­
hypothesis tracking (MHT) algorithms. The association is based on the assumptions of slowly-varying 
click amplitude and intra-click timing [4-5]. This work has been done on the dataset provided by the 
organizers of the 3rd International Workshop on the Detection and Classification o f  Marine Mammals 
using Passive Acoustics, Boston, July 2007. This dataset consists of training and test data; the training data 
includes vocalizations of three species: Blainville’s beaked whale (Mesoplodon densirostris), Risso’s 
dolphin (Grampus griseus) and short-finned pilot whale (Globicephala macrorhynchus).

s o m m a i r e

Cet article présente une méthode de détection et classification de clics d’écholocation d’odontocètes ainsi 
que d’estimation du nombre d’animaux vocalisant en même temps. Un détecteur de transitoires utilisant le 
test de Page [1-3] permet d’extraire les clics : leurs instants, durées et amplitudes ainsi que leurs spectres 
sont stockés. L ’analyse du spectre d’un clic permet de lui affecter une probabilité de distribution parmi les 
différentes espèces. L ’estimation du nombre d’animaux se fait à l’aide d’un algorithme de tracking (multi­
hypothesis tracking MHT). L ’association des clics est basée sur l’hypothèse que l ’amplitude et l’intervalle 
entre deux clics varient lentement en fonction du temps. Ce travail a été réalisé sur le jeu de données mis à 
disposition par les organisateurs du 3rd International Workshop on the Detection and Classification o f  
Marine Mammals using Passive Acoustics, Boston, Juillet 2007. Ce dernier se compose de données 
d’entrainement sur trois espèces : Mésoplodon de Blainville (Mesoplodon densirostris), dauphins de Risso 
(Grampus griseus) et globicéphales (Globicephala macrorhynchus) et de fichiers test.

1 i n t r o d u c t i o n

The most reliable means to detect echolocating cetaceans 
is acoustic: one listens for "clicks". It is of interest to 
detect and classify the clicks automatically, and 
subsequently to determine how many animals are present.

The process observed from each animal is a sequence 
of clicks whose inter-event times and whose amplitudes 
vary slowly. From the observer’s point of view there is 
the superposition of an unknown number of such 
processes, in addition to spurious measurements, hence 
both tracking and data association are helpful in 
determining the number of independent sources.

Numerous approaches exist to the tracking problem. 
Contact-based approaches are of interest here, since clicks 
provide contact-level measurement information. These 
techniques include sequential (scan-based), as well as 
batch processing techniques. In earlier work we 
documented our results in the analysis of hydrophone 
datasets with a variety of approaches; the most effective,

at least at the time being, has proven to be the multi­
hypothesis tracking (MHT) based approach. In this work, 
we further develop this tracker to include click feature 
information that allows to classify clicks originating from 
different species of vocalizing mammals.

Section 2 provides a description of the transient 
detection algorithm. Section 3 describes the assignment 
of probability over species to each click. Section 4 
describes the feature-aided MHT algorithm. Section 5 
provides some results. Conclusions are in section 6.

2 t r a n s i e n t  d e t e c t i o n  
a l g o r i t h m

The transient detection algorithm is a slightly modified 
version of the algorithm described in [1]. The algorithm 
is summarized in figure 1.

First, the data is high-pass filtered to remove part of 
the noise and avoid detection of whistles (Butterworth 
order 8, cut-off frequency: 15 kHz). The squared time
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series of the filtered data is normalized (using an 
exponential averager) and then submitted to the Page test. 
The Page test is a sequential detector that provides 
robustness against unknown signal duration as it detects 
the start and the end of a signal. At this step, the time, the 
duration, the amplitude and the spectral information of the 
click are stored for the next processing steps.

3 PROBABILITY DISTRIBUTION OVER 
SPECIES

The first step is to have some criteria to distinguish the 
clicks of the various species.

For the dataset provided for the workshop the 
maximum sampling frequency is 96 kHz (that means the 
spectrum is limited to frequencies below 48 kHz). This 
sampling frequency is not high enough to characterize the 
entire click spectrum of the different species; because of 
this limitation the criteria to distinguish the species will 
be based on the lower portion of the spectrum.

Below we describe some characteristics of the clicks 
of the three species of interest in the dataset. Based on 
these characteristics, to each click we identify a 
normalized likelihood vector that quantifies the goodness 
of fit of the click spectrum to those of the species of 
interest. In particular, the four-dimensional likelihood 
vector includes one element for each species, and one for 
none of these.

The likelihood vector impacts the track-to-click 
association scores that are also based on amplitude and 
Inter-Click Interval (ICI) information, as discussed further 
in section 4. In particular, the track state includes a 
probability distribution over the four classes of interest; 
the inner product between this distribution and the click 
likelihood vector impacts the track-click association 
score.

3.1 Blainville’s beaked whale
The energy of regular clicks of Blainville’s beaked whale 
is distributed between the -10dB endpoints of about 26 
and 51 kHz with a sharp cut-off below 25 kHz and a more 
gradual cut-off at the high end [6]. The spectra of a few 
Blainville’s beaked whale clicks coming from the training 
data are illustrated in figure 2; they correspond to the 
description of [6].

The spectrum of the extracted clicks is not always as 
nice as the examples of figure 2, as it depends on the 
quality of the signal, the signal to noise ratio and the 
quality of the click extraction; what seems important to 
recognize these clicks is that they have their maximum 
frequency above 25 kHz and a very sharp cut-off 
frequency between 20 and 25 kHz. The buzz clicks are 
different [6] from the regular clicks but no specific 
criterion to classify them was used.

3.2 Risso’s dolphin
For this species the clicks seem to have more spectral 
diversity; in all the training data files there are some 
clicks with narrow bursts in their spectrum. These bursts 
seem to be typical of the Risso’s dolphin. They are not 
always at the same frequency, and there is not always the 
same number of bursts, but many of these bursts are 
around 22, 25 and 31 kHz. Some other clicks don’t have 
these bursts at all and are more difficult to characterize. 
Figure 3 gives an example of some Risso’s dolphin clicks 
spectrum coming from the training data.

3.3 Short-finned pilot whale
The clicks of the pilot whale vary significantly and are not 
easy to characterize. In the training data, what is often 
observed is a maximum between 15 and 20 kHz with 
energy until the end of the band (45 kHz). Some 
examples in the training data contain clicks with a 
maximum frequency above 25 kHz. Figure 4 gives an 
example of some pilot whale clicks spectrum coming 
from the training data.

and stop time

Figure 1: Block diagram o f detection scheme.

Figure 2: Examples o f Blainville’s beaked whale regular 
click spectra (from the training data).
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Figure 3: Examples o f Risso’s dolphin click spectra (from 
the training data).

Frequency (kHz)

Figure 4: Examples o f pilot whale click spectra (from the 
training data).

4 MHT APPROACH TO CLICK 
ASSOCIATION

The clicks of interest are écholocation clicks that are 
emitted by the animals to find prey. The clicks are 
regular with some pauses; the tracker associates these 
sequences of clicks. Thus, the track (or associated 
sequence of clicks) of a single animal will not be 
contiguous; rather, each animal may generate a number of 
click sequences separated by lengthy pauses. Our 
estimate for the number of animals is given by the largest 
number of tracks that coexist at any time.

Signal processing of hydrophone data results in a 
single time series of clicks. This time series includes sub­
sequences that originate from an unknown number of 
vocalizing whales, as well as possible spurious clicks. 
For each marine-mammal originated sub-sequence, we 
assume the click amplitudes (dB) are slowly varying. 
Changes in amplitude and intra-click timing are due to 
animal motion, ambient disturbances, multi-path effects, 
etc. Animal feeding patterns are another source of 
change. Each sub-sequence may have missing detections. 
Our dynamical model for each sub-sequence is the 
following:
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20 log xk+1 = 20log xk + wk , (1)

{tk+1 _ tk ) = {tk ~ tk-1 ) + Vk . (2)

x k is the click amplitude of the click at time k ; wk and 

vk are noise terms with variance qw (tk -  tk_ 1 ) and 

qv (tk -  tk_ 1 ), respectively; the time dependence results 

from integration of an underlying continuous-time 
dynamical model.

From equations (1-2), we see that the state of the sub­

sequence at time tk is given by [xk tk tk _1 ] .A s  noted 

above, the overall observed click sequence is given by the 
union of the marine-mammal originated sub-sequence, 
with an additional (unmodelled) spurious false click 
sequence. In the following we have X k = 20log xk. 

Equation (1) becomes:

Xk+1 = Xk + Wk, (3)

Neglecting transmission loss differences from one 
click to the next, the model applies to the received signal 
amplitude.

The identification of the model parameters qw and 

qv requires the use of clean datasets for which each 

vocalization sequence has few missed clicks and these 
originate from the same animal. The workshop dataset 
does not provide the possibility to estimate these 
parameters because there is not enough data with just one 
animal vocalizing.

Our past work in MHT tracking has focused on 
ground and undersea surveillance, the latter based on the 
use of active sonar; see [7-8] and references therein. 
Here, we have leveraged the same data association 
methodology and track management logic, with 
appropriate modification to kinematic and measurement 
modeling, recursive filtering, and measurement gating 
logic. Kinematic modeling is given by (2-3), with 
parameter settings as noted above. We assume perfect 
measurements of click times and amplitudes.

The tracker processes the click time series in 
sequential fashion. At each step, the set of tentative track 
hypotheses is updated with the current click. With a fixed 
latency, known as n-scan, track hypotheses are resolved; 
by this we mean that a single global hypothesis is 
maintained and all conflicting track hypotheses are 
pruned. The global hypothesis selection is based on 
maximization of the sum of track scores, where each track 
score is a log-likelihood value that includes a track 
initiation penalty term.

Track hypotheses are generated on the basis of 
track validation criteria: each click initiates a tentative 
track. A later click leads to a track update hypothesis if 
the resulting ICI is low enough, and if the click 
amplitudes are sufficiently close, based on a chi-squared 
criterion; a track coast hypothesis is also generated.
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Under the hypothesis of two (or more) associated clicks, 
subsequent track updates require that a chi-squared 
criterion be met in both amplitude and ICI. Tentative 
tracks are confirmed with a minimum-click criterion. 
Tracks that fail to satisfy this criterion are discarded.

In our past work, the tracker did not exploit click 
feature information beyond click time and amplitude. In 
the present work, we exploit feature information in the 
form of the species type probability distribution described 
in section 3. Thus, the track state includes a species type 
vector, in addition to the current estimate of ICI and click 
amplitude.

As the time series click data is processed, the current 
click is compared against all active tracks, and only those 
clicks that satisfy the chi-squared criterion previously 
mentioned (for ICI and amplitude), in addition to a 
proximity test for species type, are considered as feasible 
track-click associations. Finally, it should be noted that 
elements of the species type vector are clipped at each 
track update: that is to say, each element is bounded away 
from 1, to avoid insensitivity over time to new data.

5 RESULTS
The results of our automatic-tracking formalism applied 
on sperm whale clicks can be found in [5-6]. In those 
efforts, the datasets supported identification of the 
relevant motion parameter estimates. In the present work, 
the dataset does not allow the identification of these 
parameters because it does not provide sequences of 
clicks long enough from any single animal. Without the 
estimation of these parameters, the method is challenged 
when many animals are present. Below we give the result 
of a very simple case for Risso’s dolphin; for Risso’s 
dolphin and pilot whales, we did not estimate the number 
of animals vocalizing at the same time.

The ICI of Blainvilles’ beaked whales is typically 
between 0.2 s and 0.4 s [6, 9-10]. With this limitation, 
even in the presence of many animals, click association is 
possible even if the right values of model parameters are 
not known. Some illustrative examples are presented 
below.

Note that, in the sequence of figures that go with the 
examples, tracks are plotted alternatively in dashed or 
dotted line. We do not know definitively whether distinct 
tracks originate from the same animal. Nonetheless, we 
estimate the number of vocalizing mammals as the 
maximum number of co-existing tracks present in a given 
dataset.

5.1 Training data: Risso’s dolphin.

The tracker was applied to a simple case of Risso’s 
dolphin coming from the training data. Figures 5 and 6 
give respectively the amplitude of the tracks and the ICI 
for each track. These results are obtained with the 
parameters qw = 30 5~2, qv = 0.004. In this case, clicks 
of one animal are associated leading to an ICI around 0.6 
s. Some clicks are not associated into tracks (figure 5): 
they can come from an animal that is far and whose clicks
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are not detected regularly enough to be associated, or 
possibly they are echoes of the associated clicks.

5.2 Training data: Blainville’s beaked whale
For the Blainville’s beaked whale data, because of the 
directivity of the clicks and the fact that these animals 
have a neck and can move their heads, we have chosen a

large value for q  w which allows for large variations in

click amplitude. The following parameters are used: q w

= 50 5~2, qv = 0.01. Figures 7 and 8 give respectively the 

amplitude of the tracks and the ICI for each track for one 
file of the training data. In this case, almost all the clicks 
are associated. Figure 9 gives the estimated number of 
whales versus time. It seems that for this file there are 
often two whales vocalizing simultaneously.

5.3 Test Data
For the test data, only the number of beaked whales is 
estimated. The tracks are plotted only if the probability 
for a track to come from a beaked whale is more than 0.5. 
We will present two examples. In the first one, most of 
the clicks come from a sperm whale, but there are also 
some Blainville’s beaked whale clicks. Figures 10 and 11 
give respectively the amplitude of the tracks and the ICI 
for each track generated from this data. Many clicks are 
not associated (those coming from the sperm whales); 
nevertheless, some clicks are associated at various times 
(figure 10). Figure 11 is given for a short time window, 
so as to illustrate how many whales are vocalizing at the 
same time. In this example, it seems that a maximum of 
two whales are vocalizing at the same time.

In the second example, all clicks have been identified 
(by the data provider) as coming from the pantropical 
spotted dolphin. Nonetheless, at two points in the time 
series, the tracker associates clicks with tracks having a 
high probability to be from beaked whales. Figures 12 
and 13 give respectively the amplitude of the tracks and 
the ICI for one of the two tracks generated from this data. 
The ICI of these clicks matches the expected ICI of the 
Blainville’s beaked whale, and is consistent with the 
species type probability distribution of the track. Note 
that the ICI is not used in determining the species type 
probability distribution, nor is it used in identifying 
individual animals. Rather, as discussed previously, the 
species vector is determined through the spectral content 
information in the clicks.

Figure 14 gives an example of the spectrum of a click 
coming from a pantropical spotted dolphin (continuous 
line) and the spectra of two of the associated clicks 
(dashed and dotted lines). The spectra of the associated 
clicks really have the typical shape of the Blainville’s 
beaked whale, which is quite different from the other 
clicks in the time series. Finally, figure 15 gives the 
temporal signal of these clicks: they too seem to have the 
typical shape of the Blainville’s beaked whale [11]. For
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all these reasons, we conclude that these few clicks likely 
come from a Blainville’s beaked whale.
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Figure 5: Risso’s dolphin click amplitude data (circles) and 
MHT output (in dashed or dotted lines).
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Figure 6: Sequences of Risso’s dolphin ICIs for tracks 
generated by the MHT tracker.

Time(s)

Figure 8: Sequences of Blainville’s beaked whale ICIs for 
tracks generated by the MHT tracker.
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Figure 9: Estimated num ber of whales vocalizing versus 
time

Figure 7: Blainville’s beaked whale click amplitude data 
(dots) and MHT output (dashed or dotted lines).
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Figure 10: Click amplitude data (dots) and Blainville’s 
beaked whale clicks MHT output (test data, first example).
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Figure 11: Sequences o f ICIs for tracks generated by the 
MHT tracker.

Figure14: Examples o f pantropical spotted dolphin click 
spectrum (continuous line) and -  probably -  Blainville’s 
beaked whale click spectrum (dashed and dotted line; test 
data, second example).
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Figure 12: Click amplitude data (dots) and Blainville’s 
beaked whale clicks MHT output (test data, second 
example).
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Figure 13: ICIs for a track generated by the MHT tracker.
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Figure15: Temporal signal of the associated clicks o f -  
probably -  the Blainville’s beaked whale (test data, second 
example).

6 CONCLUSIONS
This paper presents a novel application and extension of 
target-tracking technology to marine-mammal detection 
and classification; the paper extends our past work to 
include feature-aided tracking. The results are promising, 
and help in classifying beaked whales’ clicks as well as to 
estimate the number of animals present.

Our approach is challenged when many animals are 
present, especially if they are not beaked whales. To 
improve the results, it would be helpful to identify 
features or processing methods to distinguish animals 
within the same species, and, more generally, to 
determine an improved methodology to assign the click 
feature vector. Improved feature vector information 
would directly support improved tracking performance.

Finally, the parameters in our kinematic modelling of 
ICI and amplitude dynamics should be species dependent. 
Thus, a coupled approach to kinematic and classification
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filtering has the potential further to improve detection and 
classification performance.
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