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a b s t r a c t

Navy sonar has recently been implicated in several marine mammal stranding events. Beaked whales 
(particulary Mesoplodon densirostris) have been the predominant species involved in a number of these 
strandings. Monitoring and mitigating the effects of anthropogenic noise on marine mammals are active 
areas of research. Key to both monitoring and mitigation is the ability to automatically detect and classify 
animals, especially beaked whales. This paper presents a novel support vector machine based methodology 
for automated, species level classification of small odontocetes. The new classifier, called the class- 
specific support vector machine (CS-SVM), consists of multiple binary SVM's where each SVM 
discriminates between a class of interest and a common reference class. A main objective in the 
development of the CS-SVM was to realize a robust multi-class SVM whose implementation is simpler 
than existing multi-class SVM methods. A CS-SVM was trained to identify click vocalization from four 
species of odontocetes including Mesoplodon densirostris. The algorithm processes time series data in a 
fully automated fashion first detecting and then classifying click events. Results from the application of 
this automated classifier to the data sets provided by the 3rd International Workshop on Detection and 
Classification of Marine Mammals Using Passive Acoustics are presented.

s o m m a i r e

Le sonar a été récemment associé à un certain nombre d'événements de mammifère marin immobilisé en 
eau peu profond. Les Baleines a bec (en particulier le Mesoplodon densirostris) ont été les espèces 
prédominantes impliquées dans un certain nombre d'événements d'immobilisation. La surveillance et 
l'atténuation des effets du bruit synthétique sur les mammifères marins sont des domaines de recherche 
actifs. Ce qui est importante de la surveillance et la réduction des effets est la capacité automatiquement de 
détecter et classifier des animaux, particulièrement les baleines a bec. Cet article présente une nouvelle 
méthodologie basée sur une machine de support vecteur (SVM) pour automatisé le classification de niveau 
d'espèces de petits odontocetes. Le nouveau classificateur, appelé le "class-specific support vector 
machine" (CS-SVM), est composé de SVM binaire multiple où chaque SVM se distingue entre une classe 
d'intérêt et une classe commune de référence. Un objectif principal dans le développement du CS-SVM 
était de réaliser une multi-classe robuste SVM dont l'exécution est plus simple que des méthodes existantes 
de la multi-classe SVM. Un CS-SVM a été formé pour identifier le vocalisation de clic de quatre espèces 
des odontocetes incluant des Mesoplodon densirostris. Les données de série chronologique de processus 
d'algorithme sont traitées d'une mode entièrement automatisée détectant d'abord et classifiant ensuite des 
événements de clic. Les résultats de l'application de ce classificateur automatisé fournis par le "Troisième 
Atelier Internationale de Détection, Localisation, et Classification du Mammifères Marins avec les 
Acoutiques Passive" sont présentés.

1. b a c k g r o u n d

Until quite recently, little was known about the 
vocalizations of beaked whale. However, starting with the 
definitive recording of beaked whale clicks by Johnson, 
Tyack, et al. (using non-invasive DTAG's) [1,2] and 
continuing with the visually verified recording of beaked 
whales and other small odontocete vocalizations at AUTEC 
[3] there is now sufficient labeled data available to develop 
automated classification algorithms. To foster exchange of

ideas and classification methodologies, the 3rd International 
Workshop on Detection and Classification of Marine 
Mammals Using Passive Acoustics was convened. In 
addition to providing a venue for scientific exchange in the 
topic areas, the workshop provided a data set [12] consisting 
of both labeled training data for 3 species of odontocetes and 
unlabeled test data. This paper investigates the application 
of a novel class-specific support vector machine classifier to 
the classification of vocalizations from beaked whales and 
other odontocetes specifically using the data set provided by

Canadian Acoustics / Acoustique canadienne Vol. 36 No. 1 (2008) - 34



the Workshop.
At a basic level, a classification system is one that assigns 

the current input x  membership into one of v known classes 
according to some set of decision metrics or functions. In 
general, x  is a multivariate random variable where x  ~ P(x). 
For example, popular maximum likelihood classifiers assign 
an input data vector x  membership in one of v possible class 
hypotheses {Hh H2, ... Hj ... Hv} according to the 
probabilistic rule j*  = arg max(p(H3\x)). This is 
equivalently written as j*  = arg max(p(x\Hj)p(Hj)) after 
applying Bayes rule. Theoretically, a maximum likelihood 
(ML) classifier is optimal in that it offers the lowest 
probability of error of any classifier [4]. However, in 
practice, it can be difficult to attain this optimal performance 
because the multidimensional probability density functions 
p(x\Hj) are unknown and must be estimated from training 
data. The amount of training data required to estimate 
p(x\Hj) grows exponentially with the dimension of x. This is 
problematic because the collection of labeled training data 
is usually difficult, time consuming and expensive.

Statistical learning theory [5,6] represents a different 
paradigm for learning than the classical ML methods 
presented above. Statistical learning theory advocates 
solving specific problems directly vice solving more general 
problems as an intermediate step [5]. That is, if there are 
limited data available to train a classifier then the best course 
of action is to estimate a decision boundary directly from the 
data. This is in contrast to classical ML inference where the 
data are used to estimate the parameters of density functions 
and then the PDFs are used to form decision boundaries.

2. DISCUSSION
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Support vector methods (or support vector machines, 
SVM) are a rich family of learning algorithms based on 
statistical learning theory. SVM's were originally developed 
to solve binary classification problems of the following type: 
Given a set of training data {(x1, y 1), . . . ,(xm, ym)} where 
each (multidimensional) input example xt drawn from X  is 
associated with classification label = ±1, determine the 
decision function that maps any new x drawn from X  to y  = 
±1 that minimizes risk of misclassification [5]. In short,

SVMs implement the SRM principle.
SVM's use the existence of a unique optimal hyperplane 

which separates the two classes in some feature space (figure 
1). The SVM that implements the optimal hyperplane while 
maximizing the separation (margin) between the two classes 
will have the lowest risk of test error [5]. This optimal 
separating hyperplane is realized as

f  ( x ) = ^ « k y k G (x ,x  k ) + b (2)
k=1

where G is a kernel mapping and b is an offset. The weights 
□ k for a “soft” margin SVM classifier [6] are found through 
the optimization (3)
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One of the corner stones of statistical learning theory is 
the principle of structured risk minimization (SRM). Using 
the SRM principle, Vapnik developed a bound on the risk of 
classification error for a given decision function f given the 
empirical risk (training error) Remp(f) associated with the 
function, the training set size m , and the capacity h of the 
hypothesis space in which the decision function resides [6]. 
This bound (1) is often referred to as the guaranteed risk, 
and is independent of the underlying distribution of the data. 
According to the SRM principle, the smallest bound on 
classification error is achieved by minimizing training error 
while using the function hypothesis space of the smallest 
capacity [5,6].

Figure 1: A notional view of a SVM [6]. a) Training data 
drawn from x shows two classes. b) A transformation T(x) 

maps the training data to a higher dimensional space where the 
optimal separating hyperplane is found. The hyperplane in the 
higher dimensional space corresponds to a nonlinear decision 

boundary in the input space.

The constant C controls the degree of “slack” in the 
hyperplane optimization. Large C corresponds to more 
rigid separation of the classes and less tolerance for class 
overlap in the training data. Smaller C allows for moreclass 
overlap in the training data [7]. Equation (3) can be solved 
using quadradic programming techniques [6].

While SVM's were originally formulated for binary 
classification, many real world problems involve more than 
two classes. As a result, a number of methods have been 
developed for applying SVM's to multi-class problems. 
These methods tend to follow one of three basic approaches. 
The first approach is to form v binary "one-against-the-rest" 
classifiers (where v is the number of class labels) and choose 
the class whose decision function is maximized [5]. The 
second approach is to form all v(v-1)/2 pairwise binary 
classifiers and choose the class whose set of pairwise 
decision functions are in some way maximized [7]. The 
third approach is to reformulate the objective function of the 
SVM for the multi-class case such that the decision 
boundaries for all classes are optimized jointly [8].

This paper presents a new type of multi-class support 
vector classifier called the class-specific SVM (CS-SVM). 
The new classifier consist of v binary SVM's where each

1
h
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SVM discriminates between one of v classes of interest and 
a common reference class. The class whose decision 
function is maximized with respects to the reference class is 
selected. The CS-SVM extends the concept of exploiting 
class-specific features as proposed by other researchers for 
maximum likelihood classifiers [4] and neural networks [9] 
to the multi-class SVM problem.

Many applications involve the classification of signals 
which are set in additive noise. In such cases, the problem is 
not to differentiate between two or more of v signals present 
at the same time but to differentiate between one of v signals 
and noise. The input vectors for such problems are actually 
of the form Xj=Sj +n, for j  = 1, 2,... v. Currently, SVM's 
are designed assuming the classification problem is to 
distinguish x i=si from Xj=Sj. Any noise in x  is assumed to be 
accommodated by allowing the "slack variables" in the 
hyperplane optimization [6].

The CS-SVM expressly acknowledges the presence of 
the noise by treating it as a common reference class. For a 
single class, the classification problem reduces to a detection 
problem, a decision as to whether signal s is present or not. 
That is, y  = sgnf(x)) =+1 when x=s+n and y  = sgnf(x)) =-1 
when x  = n. In the multi-class case, x  is assigned 
membership in the class whose decision function f(x) 
against the reference is maximum, or to the noise-only class 
when a llf(x ) < 0. Note that in acknowledging the presence 
of a common reference class no assumptions are made about 
that class. Although it is intuitive to think of the reference 
class as Gaussian noise, the reference class could be of any 
arbitrary distribution. This means that the CS-SVM can 
actually act as a signal detector for signals of unknown 
distribution set in noise of unknown distribution.

Figure 2 is an notional illustration of the CS-SVM concept 
for two dimensional data. Optimal separating hyperplanes 
for each class versus the noise-only reference class are 
found. Since the optimal hyperplane separating any two 
classes is unique [5], the optimal hyperplane for class i 
versus n will be different from the optimal hyperplane for 
class j  versus n. However, both hyperplanes are optimized 
against a common reference class. The decision function 
f  (x) for either signal-present class should reject the noise-
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Figure 2: A geometric view of the optimal separating hyperplanes 
for two CS-SVMs for class i and class j ,  respectively, versus a 
common reference class in a 2-D decision space.
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only reference case. Further, it is hypothesized that f i(x ) will 
be greater than f  (x) whenever x  is draw from class i since 
f  (x) is optimal for class i an d f (x) is not

3. EXPERIM ENTAL RESULTS

In the past several years there has been much interest and 
progress in acoustic monitoring, localization and tracking of 
marine mammals [3,10]. Acoustic monitoring has a number 
of benefits over visual monitoring. Chief among them are 
increased area of coverage and the ability to operate over 
wider weather conditions and at night. A major drawback of 
acoustic monitoring is associating species information with 
the received vocalizations. However, recent field tests 
combining visual verification and digital recording tags with 
acoustic monitoring and localization have resulted in sets of 
labeled acoustic data [3]. One such data set was provided as 
part of the 3rd International Workshop on Detection and 
Classification of Marine Mammals Using Passive Acoustics 
[12]. This section presents the development of a CS-SVM 
classifier using the Workshop data set.

The data set provided for the Workshop consisted of 
labeled training data for 3 species as well as unlabeled test 
data. Training data was supplied for Mesoplodon desirostris 
(Blainville's beaked whale), Globicephala macrorhynchus 
(short-fin pilot whale) and Grampus griseus (Risso's 
dolphin). The training data for each species consisted of five 
or more .wav files with each file containing 2 to 3 minutes of 
16-bit audio data sampled at 96KHz. The test data consisted 
of nine longer .wav files (each 10+ minutes) also sampled at 
96KHz. Within the 9 test files there were examples of the 
species alone, examples containing a mix of species as well 
as examples containing none of the 3 species given in the 
training data. Prior to analysis or processing, all data were 
passed through a 12 KHz high-pass filter.

3.1 Training Data and CS-SVM Feature Selection

The first challenge in working with the Workshop data 
was deciding which events and signal features the classifier 
should be trained to recognize. Design of a classification 
algorithm generally requires selection a set of distinguishing 
features qi to represent the raw data such that the input 
vector to the classifier is x  = [q1 q2 ... qn]T. Ideally the the 
feature set should be a sufficient statistic for the raw data but 
it also must be of reasonably low dimension as the amount 
of training data required grows with the dimension of x .

One goal for the CS-SVM classifier presented here is for 
it to become incorporated into the acoustic marine mammal 
monitoring system, M3R [3,10]. This means that the 
classifier would have to be fully automated and run in real­
time. In turn, that required selection of features that can be 
readily extracted “on the fly”. Thus, it was decided that the 
classifier should classify individual click events rather than 
attempting to analyze click trains.

In previous experiments [11], the times between 
consecutive zero crossings were successfully used as 
features for classifying odontocete clicks. A zero crossing 
detector is easy to implement and the periods between
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crossings capture the time-frequency structure of the signals. 
Additionally, the envelope shape of the clicks can be 
captured by using the normalized peak values between 
crossings (figure 3).

T im e  (m s)

Figure 3: The times between zero-crossings and normalized 
envelope amplitudes were selected as features for classifying 

individual clicks.

Time-frequency analysis of the training data from 
Globicephala macrorhynchus and Grampus griseus showed 
the clicks contained in those files to be highly variable. In 
contrast to the Mesoplodon data where the regularity of 
click waveforms is almost uncanny, it was difficult to 
identify representative click waveforms in the pilot whale 
and Risso’s dolphin data (figure 5). After cross correlating 
all the clicks extracted from the training files, the click from 
each species most highly correlated with most of the other 
clicks was selected as a replica. Then, the training clicks 
which were most highly correlated with the replicas were 
used to build the training sets.

Nine dimensional feature vectors were formed using the 
times between 6 zero-crossings about the peak and three 
normalized envelope amplitude peaks. The resulting feature 
sets from the Globicephala and Grampus did not cluster as 
compactly as those from Mesoplodon. There was also 
significant overlap of the features for Mesoplodon and 
Grampus in the feature space (figure 6).

One binary SVM was constructed for each signal class 
versus an ambient noise reference class. The training set Tj 
for the j -th CS-SVM was defined as

The next step in the training process was to analyze the 
training data from each species to select the set of click 
events to be used in training the CS-SVM. The idea was to 
select several hundred representative clicks from each 
species, then to extract the zero-crossing and amplitude 
envelope features from them. Time-frequency analysis of the 
training data for Mesoplodon desirostris identified two 
distinct click waveforms, foraging clicks and buzz clicks 
(figure 4). A large majority of the clicks were the 
stereotypical foraging clicks, but several buzzes were also 
detected [13]. Since the foraging and buzz click waveforms 
are distinct, separate CS-SVM’s were trained for the two 
click types.

Time <m•)

(a )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (ms)

(b)
Figure 4: (a) Overlay of time series data for 3 Mesoplodon 

desirostris foraging clicks. (b) Time series of a single buzz click.

Tj  = {(xj y )} = {(sj+ n  U  (n  -1)} for j  = 1 to 4 .

The training sets for each of the four class-specific SVM 
consisted of approximately 250 signal-present vectors and a 
similar number of noise-only vectors. These training sets 
were used in the optimization (3) to find the optimal 
hyperplane fj(x) for each class. A Gaussian radial basis 
function was used as the kernel in (2) and (3) yielding

f j  (x )=  X  u k y k ex p ( -  ||x  -  x  k 112 /  2 c t) +  b

where k  e  S j  the set of support vectors class j.

The four class CS-SVM classifier was then tested using 
additional clicks extracted from the training data files. These 
test sets also consisted of approximately 250 signal-present 
vectors and 250 noise-only vectors (Table 3). The 
classification performance for the test sets was evaluated 
using the following metrics, Pcc = fraction correctly 
classified (signal present), Pmiss= fraction misclassified 
(signal present) and Pnse= fraction correctly classified 
(noise-only). The results were encouraging, especially for 
the Meso-plodon foraging click class. Note that the 
poorer performance of the buzz class was attributed to 
changes in buzz click waveform observed as the inter-click 
interval decreases during prey capture.

3.2 CS-SVM Results for the Test Data Files

Finally, the CS-SVM classifier was tested using the 
unlabeled test files. A cursory manual review of the test 
data prior to processing indicated the presence of sperm 
whales clicks in multiple test files. Although not part of 
Workshop training data, a class-specific SVM for sperm 
whale clicks was trained using additional labeled sperm 
whale data. The ability to add a class without affecting 
SVM design for the other classes highlights one of the
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strengths of the CS-SVM approach. However, to be 
consistent with the data conditioning stream for the other 
classes, the sperm whale data was passed through the same 
12 KHz high pass filter. This was known to be a suboptimal 
processing step as most of the energy in sperm whale clicks 
is typically below 12 KHz. A better solution for a CS-SVM 
classifier that includes a sperm whale class would be either 
to lower the frequency of the high-pass filter or to process in 
multiple frequency bands.

Class P c c P  .
m iss

P
nse

Mesoplodon (forage) 1.0000 0.0000 0.9680

Mesoplodon (buzz) 0.7900 0.2100 0.9600

Globicephela 0.9380 0.0620 0.9682

Grampus 0.9451 0.0549 0.9721

(a)

(b)

(c)

Time (ms)

(d)
Figure 5: Clicks showing some of the variability in the 

Globicephala macrorhynchus (a-b) and Grampus griseus (c-d) 
training data.

Table 3: Performance of the 4 class CS-SVM on test sets of 
approximately 250 signal-present vectors and 250 noise-only 
vectors drawn from the training data files for each clas

The nine test data files were processed in a fully 
automated fashion. The classifier program automatic-ally 
read the data from the .wav files, filtered it, and performed 
time domain energy detection to identify click events. Time 
series data about the energy detector peaks were used to 
construct feature vectors. The features vectors x  extracted 
for each click event were then used to evaluate the class- 
specific decision functions, f(x). The click event was 
assigned membership in the class whose decision function 
was maximum or to the noise-only reference class when 
max{ft(x)} < 0. Figure 7 shows the output of the 5 class- 
specific decision functions for data in the neighborhood of a 
Mesoplodon foraging click (from Test File 1). Although 
f 4(x) associated with Risso's dolphin also peaked, fj(x) for 
the foraging click was maximum. Figure 8 shows the class 
decision output of the CS-SVM for Test File 1. This test file 
contained clicks from both Mesoplodon and Globicephela. 
Table 4 summarizes the performance of the 5-class CS-SVM 
for all of the Workshop test data.

Amb. Noise 
Beak -buzz 
Rissos dolf. 
Beak -forage 
Pilot whale

Figure 6: Distribution of the periods between three consecutive 
zero-crossings for ambient noise, M. desirostris (buzz), Grampus 

griseus, M. desirostris (forage), and Globicephala 
macrorhynchus.
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4. CONCLUSION

This paper has presented a novel multi-class support 
vector machine classifier, the class-specific SVM. The new 
classifier consists of v binary SVMs where each SVM 
discriminates between one of v classes of interest and a 
common reference class. Test inputs are assigned 
membership in either the class whose decision function is 
maximized or the reference class if all decision functions are 
negative. A five class CS-SVM was created to classify 
broadband click vocalizations from several species of 
odontocetes using data provided by the 3rd International 
Workshop on Detection and Classification of Marine 
Mammals Using Passive Acoustics. While the CS-SVM's 
classification performance was quite good for species 
specific test cases drawn from the labeled training data, its 
classification performance was not as good for the unlabeled 
test data files. Some classes, like the Mesoplodon 
densirostris foraging class and the Sperm whale class, 
performed well on the test files but the performance for the 
other classes not as reliable.

Figure 7: Output of the decision functionsf (x )  vs time for the 
5-class CS-SVM processing a data stream containing a 

Mesoplodon foraging click.

This difference in classification performance for the test 
data files is most likely a reflection of the feature sets 
chosen. The zero crossing and amplitude features used were 
very distinctive for the sterotypical Mesoplodon foraging 
clicks, but less distinctive for the other classes. In particular, 
there was significant overlap in the feature space between 
the Mesoplodon foraging clicks and the Grampus clicks. As 
a result, many Grampus clicks were misidentified as 
foraging clicks. Further analysis of Grampus vocalizations 
and modification of the feature set is recommended. 
Another issue in classification of the test data was the lack of 
a “none of the above” designation. The CS-SVM always 
assigned detected events to one of the 5 classes or to the 
noise-only class. The addition of a second level of 
thresholding of the decision functions, such as requiring 
max{f(x)}>L, would reduce misclassification of unknown 
signal-present events.
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Figure 8: Class decisions from the 5-class CS-SVM for 579 
click events from Test File 1..

Test Files 5-class CS-SVM Results

File 1 = Unverified Blainville's 
Beaked Whale and Short-finned 
Pilot Whale

Correctly identified  as Blainville's 
beaked whale and Short-finned pilot 
whale

File 2 = Blainville's Beaked 
Whale

Correctly identified  as Blainville's 
beaked whale

File 3 = Pantrop ic al Sp otte d 
Dolphin

Incorrectly classified as Short-finned 
pilot whale

File 4 = Pantropical Spotted 
Dolphin

Incorrectly classified as Short-finned 
pilot whale

File 5 = Risso's Dolphin Incorrectly classified as Blainville's 
beaked whale

File 6 = Unverified Blainville's
Beaked Whale & Sperm Whale

Correctly identified  as Blainville's 
beaked whale and sperm whale

File 7 = Risso's Dolphin Incorrectly identified  as a mix o f
Mesoplodon forage & Mesoplodon 
buzz (only 11.1% of clicks correctly 
classified as Risso's dolphin).

File 8 =Short-finned pilot whale Incorrectly identified  as a mix o f
Mesoplodon forage, Mesoplodon buzz 
& Risso's dolphin (only 16% correctly 
classified as Pilot whale).

File 9 = Sperm Whale Correctly classified as Sperm whale 
(some confusion with Pilot whale 
probable caused by 12 KHz HPF)

Table 4: Results from the 5 class CS-SVM for the Workshop 
Test Data. The contents of the Test Files were not known prior 

to the Workshop.
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