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a b s t r a c t

A species classifier is presented which decides whether or not short groups of clicks are produced by one or 
more individuals from the following species: Blainville’s beaked whales, short-finned pilot whales, and 
Risso’s dolphins. The system locates individual clicks using the Teager energy operator and then 
constructs feature vectors for these clicks using cepstral analysis. Two different types of detectors confirm 
or reject the presence of each species. Gaussian mixture models (GMMs) are used to model time series 
independent characteristics of the species feature vector distributions. Support vector machines (SVMs) 
are used to model the boundaries between each species’ feature distribution and that of other species. 
Detection error tradeoff curves for all three species are shown with the following equal error rates: 
Blainville’s beaked whales (GMM 3.32%/SVM 5.54%), pilot whales (GMM 16.18%/SVM 15.00%), and 
Risso’s dolphins (GMM 0.03%/SVM 0.70%).

SOMMAIRE
Ce travail concerne la création d’un système pour identifier trois espèces d’odontocètes par les clics 
d’écholocation: la baleine à bec de Blainville, la baleine pilote, et le dauphin de Risso. Les clics sont 
identifiés par l’opérateur d’énergie Teager-Kaiser, et les vecteurs cepstraux sont construits. Dans un travail 
de détection, on compare les résultats obtenus avec deux modèles différents : le modèle de mélange 
gaussiens (MMG) et la machine à vecteurs de support (MVS). Les résultats de la détection sont exprimés 
par les courbes de DET, « Detection Error Tradeoff». Le point sur les courbes de DET où les probabilités 
de fausses alarmes et manques de détection sont égales est comme suit : la baleine à bec de Blainville 
(MMG 3,32%/MVS 5,54%), la baleine pilote (MMG 16,18%/MVS 15,00%) et le dauphin de Risso (MMG 
0,03%/MVS 0,70%).

1. i n t r o d u c t i o n

The use of acoustic information for study of marine 
mammals is a promising method that is complimentary to 
visual observations. One use of acoustics is to determine 
the presence of species of interest, the so called detection 
problem. In this work, we describe a detection system 
implemented for the 3rd International Workshop on the 
Detection and Classification of Marine Mammals Using 
Passive Acoustics, a conference which brought together 
multiple groups to work on a common data set containing 
calls from Blainville’s beaked whales (Mesoplodon 
densirostris), short-finned pilot whales (Globicephala 
macrorhynchus) and Risso’s dolphins (Grampus griseus). 
Low error-rate detections were achieved for all three species 
using both Gaussian mixture models (GMMs) and support 
vector machine algorithms.

2. BACKGROUND

Building an effective machine learning solution is a 
combination of determining the right set of features to use 
and an appropriate classifier. Features should be chosen 
such that they capture the essence of the problem, a

statement that is easy to make and frequently difficult to 
achieve. Once the feature set is determined, a method of 
detection or classification must be selected that enables the 
system to effectively exploit characteristics of the feature 
set.

2.1 Features

Bioacousticians working on detection and identification 
problems for odontocetes have traditionally concentrated on 
extracting features from whistles. Typically, systems 
identify a variety of measurements of the whistle such as 
slope, inflection points, frequency, etc. either manually or 
automatically (e.g. [1, 2]). There has been little effort in the 
examination of echolocation clicks or burst pulses as 
providing information that can be used to determine species, 
and until recently, band limitations of most field recording 
systems prevented serious consideration of clicks as features 
for species recognition tasks.

We have noted unique spectral patterns in echolocation 
clicks of some species of delphinids, notably Pacific white­
sided dolphins (Lagenorhynchus obliquidens) and Risso’s 
dolphins [3]. Earlier work [4] on an automatic species
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identification system showed good results on a species 
identification problem where whistles, burst-pulses, and 
clicks were processed in an identical manner. These results 
have led us to investigate the suitability of clicks as 
indicators of species. We see this as being a complementary 
task to whistle-based systems rather than a competing one. 
Both methods have advantages: whistles propagate farther 
than clicks [2], but the short duration of clicks makes call 
separation easier in large population groups, and some 
species are not known to whistle [5]. In addition, whistle 
production may be linked to behavioral state and we have 
observed species which are known to whistle producing 
only clicks.

A range of techniques have been used to characterize 
odontocete clicks [6]. In general, signal samples are 
squared and heuristics or distributional metrics are used to 
determine the beginning and ending energy. As described 
later, we use a technique based upon the Teager energy 
operator which is similar to that proposed by Kandia and 
Sylianou [7]. Once the click is identified, typical features 
include the peak frequency, 3 dB bandwidth, inter-click 
intervals, etc. [8]. These metrics are a very rough 
approximation of the spectral shape. Most of the work on 
echolocation has focused on on-axis clicks, but it is well 
known that off-axis clicks lack the coherence of on-axis 
ones and have significantly different spectra [9-11]. In 
addition to inter-species differences, click production is 
known to vary even in the same individual in source level, 
peak frequency, and bandwidth, depending upon factors 
such as activity and environment [8, 10]. The variation in 
click attributes suggests that an effective species detector 
needs to be able to learn a variety of click types associated 
with each given target species.

2.2 Classifiers and detectors

A recent discussion on applications of machine learning 
techniques to bioacoustics can be found in [4] and includes 
linear discriminant analysis, neural networks, dynamic time 
warping, adaptive resonance theory networks, classification 
and regression trees, hidden Markov models, self-organizing 
maps, and Gaussian mixture models (GMMs). In this study, 
we compare the performance of GMMs with that of support 
vector machines (SVMs). GMMs are well known for their 
ability to model arbitrary distributions whereas SVMs 
attempt to model the boundaries between distributions. 
SVMs have gained in popularity throughout the 1990s in the 
machine learning community and to our knowledge have 
only recently been considered in the bioacoustics 
community [12, 13].

3. METHODS

3.1 Click production of target species

The click characteristics of the three species vary greatly. 
Digital acoustic recording tag (DTAG) recordings of free- 
ranging Blainville’s beaked whales have shown that they 
produce two types of click trains [10]. One type has been 
Canadian Acoustics / Acoustique canadienne

observed in prey approach, characterized by a frequency 
modulated (FM) sweep with inter-click intervals (ICIs) of 
100 ms and a median centroid frequency of 38.3 kHz, RMS 
bandwidth and duration of 6.9 kHz and 271 ^s, respectively. 
These swept clicks are presumed to be related to foraging 
activities. As the whales close in on their prey, they have 
been observed to switch to buzz clicks which have different 
spectral characteristics from the FM  sweep clicks. The buzz 
clicks have greatly diminished ICIs, a higher median 
frequency of 51.3 kHz with wider RMS bandwidth (14.6 
kHz) and an RMS duration which is about half of the FM 
sweep clicks (29 ^s).

Analysis of clicks recorded on a ship-deployed hydrophone 
array [9] show that free-ranging Risso’s dolphins produce 
clicks w ith ICIs generally between 40-200 ms with short 
click trains having ICIs of 20 ms. Centroid frequency of on- 
axis clicks is 75 kHz (out of band for the conference data 
set) w ith an RMS bandwidth of 25 kHz and duration of 30­
50 ^s. Presumed off-axis clicks from a different population 
of Risso’s dolphins have been shown to have a spectral peak 
and notch structure [3].

Echolocation clicks of short-finned pilot whales recorded in 
the Gomera and Canary Islands have been reported [14] to 
produce clicks with RMS bandwidths of 27 kHz and 
durations of 8.4 ^s. The mean centroid frequency was 68 
kHz (also out of band for the conference data).

3.2 Click detection and feature extraction

Clicks are detected using a two-stage search. In the first 
stage, spectra are created for 20 ms frames w ith a 10 ms 
frame advance that have been windowed using a Hann 
window. Noise is estimated on a per frequency bin basis 
over a 5 s average. A frame is said to be a click candidate 
when frequency bins covering at least 5 kHz exceed the 
noise floor by 12 dB. After obtaining a set of click 
candidates, a second pass locates clicks with greater 
precision in a high pass filtered (10 kHz) signal.

The Teager energy operator [15] is an estimate of the 
instantaneous energy of a signal and has been shown to be 
an effective method for detecting echolocation clicks [7]. It 
is based upon a model of the energy needed to drive a 
spring-mass oscillator, and measures energy with high 
resolution:

y/d (x[n]) = x2[n] -  x[n — 1]x[n +1] . (1)

A noise floor is set at the 40th percentile of the Teager 
energy measurements across the interval detected in the 
previous step. Locations where the Teager energy exceeds 
the noise floor by a factor of 50 are assumed to be interior to 
the click and the click onset is found by searching for the 
point at which the energy dips below 1.5 times the noise 
floor.

Once the click has been located, cepstral features [16] are 
computed for a 1200 ^s segment of the signal starting with
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the click onset. The log magnitude of the discrete Fourier 
transform of the segment is computed after windowing with 
a Hann window. The discrete cosine transform of this result 
is the cepstrum. We also form an estimate of the cepstral 
representation of noise in the vicinity of the click and 
subtract the average noise. This is known as cepstral means 
subtraction [17] and is a method which normalizes for 
convolutional noise (e.g. mismatched hydrophones or 
filtering). Once cepstral features have been generated, they 
are grouped such that the first click and the last click are 
separated by no more than 2 s and no click is more than 1 s 
apart from the previous click.

3.3 Detection

Gaussian mixture models (GMMs) and support vector 
machines (SVMs) were both used in this study. Due to 
space constraints, only an outline of each technique is 
presented, but references to the literature where complete 
details can be found are provided. For both methods, our 
experiments are designed to answer the question: Given 
that we are looking for target species X, was a specific set of 
clicks produced by this species? This contrasts with an 
identification task where one attempts to determine which 
species produced the set of clicks.

Gaussian mixture models

For GMM classifiers, one GMM was trained for each of the 
three species. GMMs are frequently used to approximate 
arbitrary distributions as a linear combination of parametric 
distributions. A set of N normal distributions with separate 
means ^  and diagonal covariance matrices are scaled by a 
weight factor ci such that the sum of their integral across the 
entire feature space is 1. The likelihood of the cepstral 
feature vector X which represents a click can be computed 

for model M  = [{ c },{Mi} , }  where 1 < i < N  ] by:

N ~(x-p j )'S71(x-fi, )
Pr(x |M ) = £ ------ C ----- r  e 2 . (2)

tt (2^)T I ^i F

The number of mixtures is typically chosen empirically. 
Model estimation (training) cannot be accomplished by a 
straightforward application of the maximum likelihood 
(ML) principle as the relative contribution c  of each 
mixture to the total likelihood is unknown. To address this, 
the GMM is trained incrementally. A single mixture GMM 
is estimated from the sample mean and variance. This 
mixture is then split into two mixtures by dividing the 
weight in two and forming new mixtures where the means 
have been slightly perturbed by a small vector ±o . The 
resulting model is then refined by an application of the EM 
algorithm [18] where the current estimate is used to 
determine the expected values of the mixture weights. With 
the missing weights estimated, the ML estimator can be

found. This process is executed several times and the model 
is split again. Once the desired number of mixtures is 
reached, iteration is performed until a convergence 
threshold is reached. Convergence is guaranteed and is 
typically fast (5-15 iterations).

After the models have been trained, the likelihood of click 
groups are computed and a log likelihood ratio test is used 
to decide whether each group belongs to each species [19]. 
We make the simplifying assumption that clicks in a group 
are independent and compute the group likelihood as the 
product of the individual click likelihoods normalized for 
group duration by using the geometric mean. These 
operations are done in the log domain to prevent machine 
underflow. Decisions to accept or reject the hypothesis that 
a click group was produced by the species in question are 
based upon a log likelihood ratio test. Due to the small 
number of competing classes, we set the alternative class 
likelihood to be the likelihood of the highest competitor 
model as opposed to a background model. The system is 
implemented using Cambridge University’s hidden Markov 
toolkit (HTK) [20] along with a custom set of programs 
written in Python and Matlab™.

Support Vector Machines

Support vector machines do not model the distribution of 
classes, but rather their separation [21]. SVMs find the 
separating hyperplane that minimizes the risk of a classifier 
under a 0-1 loss rule. Let /  ( ) be a function parameterized

by 0 that maps examples to negative and positive class 

labels y  e {-1,1} . As we almost never have access to the 

actual risk, we can attempt to minimize the empirical risk:

1 N  1
R emp  (*) = -  2  2 1 *  -  f S  (X ) | .  (3)

i=1

Thus, optimizing the parameter vector 0 is likely to result in 
lowering the misclassification rate. For a given family of 
classifiers, it can be shown that there exists an upper bound 
on the actual risk with any desired level of certainty [21, 
22]. For SVMs, each/ ^j(-) specifies a hyperplane

WX + b = 0 which separates the two classes of linearly 
separable training data (nonseparable data is discussed 
later). The hyperplane normal vectorW and bias b are 
scaled such that WX + b = +1 holds for the closest positive 
and negative training example, resulting in an empirical risk 
of 0. The separating line for a two dimensional synthetic 
data set and the parallel lines that occur at WX+b = +1 are 
shown in Figure 1. As points on the hyperplane 
satisfy WX+b = 0 , the distance between the closest point of 
each class and the hyperplane is .
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Figure 1 - Separating hyperplane (solid line) between squares 
and circles that maximizes the distance between the closest 

vectors (margin). Support vectors lying on wx + b =+1 are 
outlined.

Figure 2 -  Squares and circles that are not linearly separable. 
Hyperplane with dot product kernel (left) versus Gaussian 

kernel (right).

Consequently, the separation between the two closest points 
and the hyperplane is ̂ jjW|. This quantity is referred to as

the margin and we can learn the appropriate parameters for 
the SVM by maximizing the margin subject to the 
constraints of the closest vectors. This is done by

minimizing ||w|| or equivalently llwlf  subject to constraints:

\wx + (4)

This is a constrained convex optimization problem, which 
can be solved by optimizing the dual of the Lagrange 
multiplier representation [21]. The Lagrange multipliers 

0 C1< i < N  will only be nonzero for training examples which 

satisfy equality in (4). These vectors are called support 
vectors. The SVM normal vector w  can be constructed

from the dual solution: w  = ' ^ a i y i x i , and b is a more
i

complicated function of the support vectors which we omit. 

We decide the class of test vector t  by examining the sign 

of wt  + b , or equivalently in the dual representation:

1
Y j a i y i

x,t + b > 0

- 1 ^ a ,y,xtt + b < 0
(5)

The above discussion is for sets that are linearly separable, 
and can be extended in two ways. The first is to introduce a 
slack variable £  > 0 for each training vector which permits 

support vectors to be on the wrong side of the hyperplane:

wxi + b > 1 - £  y, = 1 

wxt + b < -1  + £  y, = -1 .
(6)

When minimizing the risk, a cost factor C  is introduced 
which scales the sum of the slack variables, with high values 
of C  resulting in higher penalties for crossing the margin. 
Like the linearly separable case, this can also be solved as a 
constrained optimization problem. The complexity of 
solving these problems results in selecting strategies such as 
the sequential minimal optimization algorithm [22] to 
provide solutions within a reasonable time frame.

Typically, the normal vector w  is not actually constructed, 
but left as a linear combination of the Lagrange multipliers 
oc, and their associated training data xi and class y i :

wt = ' ^ a iy iXi -t . A second key element to address
i

nonlinearly separable data is to use a kernel function K  (•,•) 

to transform the data into a different space where linear 
separation is possible. The examples that we have seen so 
far use what is known as the dot product 

kernel K (x, t ) = x t  . While numerous kernels have been 

proposed [22], we will restrict ourselves to nonlinear 
Gaussian kernels

£
K  ( x , t ) = e- o  2ct (7)

where a  is a tunable parameter. Figure 2 shows an example 
of separating hyperplanes for nonlinearly separable data.

When multiple test vectors are classified as a group, the 
decision to accept a hypothesis that the clicks are produced 
by a specific species is based upon the threshold of a 
statistic of the group’s click scores. We use as our statistic 
the percentage of clicks for which f  (•) > 0 . The system is

implemented using the Torch machine learning library [23] 
and custom C++, Matlab™, and Python code.

For both types of classifiers, we used all available training 
data for the final classifier. During development, training 
data was jackknifed by recording date so that the system 
could be evaluated with test data separate from the 
evaluation test reported in the results section.

3.4 Evaluating results

Results are plotted using the detection error tradeoff (DET) 
curve [24]. DET curves are similar to receiver operator 
curves (ROC) except that in the former error rate normal 
deviates are plotted on both axes, whereas in the latter the 
correct detection and false alarm probabilities are plotted. 
When the false alarm and missed detection probabilities are 
normally distributed, the result is a straight line in DET

2
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Figure 3 -  Detection error tradeoff curves for GMM detector 
on evaluation data.

Figure 4 -  Detection error tradeoff curves for SVM 
detector on evaluation data.

space. DET plots are more effective at highlighting 
differences between similar systems than ROC curves.

4. RESULTS

Mean normalized cepstral features were extracted for all 
files of the dataset. Tests on the jackknifed training data 
were used to tune the parameters of each classifier. For the 
GMMs, 2, 4, 8, 16, 32, and 64 mixture models were created, 
with 16 mixture models outperforming other parameters. 
For SVMs, a grid search on the penalty and standard 
deviation was performed (Ce {100, 200, ..., 600}, 
<7 e {100, 200, ..., 1000}). Equal error rates (EERs), the 
point at which a decision threshold results in the same 
percentage of false alarms (false positives) and missed 
detections are summarized in Table 1. Tests on the last 
day’s training data performed poorly for SVMs, leading to 
the high overall EERs.

The best performing models from the development data 
were then used to classify click groups from the nine 
evaluation files whose content is summarized in Table 2. 
The evaluation dataset contained calls from the three 
aforementioned species plus an additional two: Atlantic 
spotted dolphins (Stenella frontalis) and sperm whales 
(Physeter macrocephalus).

File 1 had mixed Blainville’s and pilot whale clicks. We 
manually established “correct” labels for each click group in 
the file based upon known characteristics of the species and 
our observations of the calls in the development data. A 
total of 2040 click groups with a mean of 10.1 clicks per 
group (min=1, max=103, std dev.=7.2) were classified. 
DET curves and EERs for all three target species are 
produced for the GMM and SVM detectors in Figures 3 and
4. The curves show the tradeoff between false alarms and 
missed detections for various detection thresholds. Note 
that the thresholds themselves would add a third dimension 
to the plot and are not reported.

5. DISCUSSION

For both classifiers, the detector performance on Risso’s 
dolphins appears to be nearly perfect in the evaluation data, 
but the Risso’s calls in the conference data were filtered, 
leading us to suspect that part of the accuracy is due to 
environment detection as opposed to species detection. It is 
also worth noting that much of the error on the SVM 
development set for Risso’s dolphins comes from one 
particular split where the data from August 19th 2006 was 
used as test data. This was the one day for which the 
Risso’s dolphin data contained clicks with spectra above 40 
kHz. The GMM classifier dealt better with this situation, 
recognizing other similarities in the data. The pilot whale

EER % GMM SVM
Blainville’s 2.8 21.4
pilot 3.7 21.1
Risso’s 2.3 14.7

Table 1 -  Equal error rates for jackknifed development data 
with 16 mixture GMMs and C = 100, ̂  = 200 SVMs for the 

best parameter set across all jackknife splits.

45 - Vol. 36 No. 1 (2008)

Species producing calls in the test files
1 Blainville’s + some 

pilot
4 spotted 7 Risso’s

2 Blainville’s 5 Risso’s 8 pilot
3 spotted 6 Blainville’s 9 sperm

Table 2 -  Contents of evaluation files 1-9.
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detectors had the worst performance on the evaluation data, 
with the majority of errors being in the 661 out-of-set 
(species not seen in training) click groups from the spotted 
dolphins and sperm whales. Using the EER threshold, 
42.97% (GMM) and 39.79% (SVM) of the out-of-set click 
groups were incorrectly identified as pilot whales, indicating 
that rejection of out-of-set clicks is an area for future work.

For any out-of-set test, the impostor click will most closely 
fit one of the three distributions, making its GMM 
likelihood higher than the others. The likelihood ratio 
between the two highest ranked models may be large, and it 
is not unexpected that a greater number of errors will occur 
in this situation. When examining the likelihoods produced 
by the pilot whale model without the normalizing alternative 
hypothesis, there is significant overlap. Consequently, 
setting a threshold based upon the pilot whale model alone 
would not have improved the results. Adding enough 
species to the alternative hypothesis to better represent the 
variability of clicks across species may improve out-of-set 
rejection. For SVMs, the lack of a distributional approach 
means that even if a click is far from the target species’ 
distribution, if it lies on the target side of the hyperplane, it 
will be considered a target, making the need for additional 
data critical.

It is worth noting that the DET curve for Blainville’s beaked 
whales has a relatively flat slope over much of its length for 
both detectors. This means that the threshold is not overly 
sensitive, and we can reduce either the miss or false alarm 
probabilities significantly with a low impact on the other 
metric. As an example with GMMs, it is possible to have a 
very low false detection rate (< 0.2%) and miss no more 
than 5% of the click groups. While the Risso’s dolphin 
curve has a steep slope, its location in the lower left corner 
makes this less critical. The shape of the pilot whale curves 
is more problematic, with small differences in threshold 
having more significant impact.

When examining what appeared to be off-axis clicks, 
Johnson et al. [10] were able to distinguish individual pulses 
by cross correlation with on-axis clicks. They noted that the 
spectra of the off-axis clicks were “highly featured,” lacking 
the smoothness of presumed on-axis clicks. The spectral 
irregularities were attributed to possible interference 
between pulses. We believe this to be a reasonable 
hypothesis, and one of the major reasons that echolocation 
based species detection works well. Measurements of the 
melon taken from CT scans of a deceased Risso’s dolphin 
show a 30 cm length from dorsal bursae to probable signal 
exit and a 20 cm width at the widest section. While exact 
propagation paths are beyond the scope of this work, the 
1200 ^s window used in this study is adequately long to 
permit multiple paths to have interfered in constructive 
and/or destructive manners (assumed sound speed of 1500 
m/s), even for the larger species. It is interesting to note that 
when we used windows smaller than 1100 ^s, detection 
performance degraded significantly.
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6. Conclusions

We have shown that cepstral feature vectors extracted from 
spectra over a 1200 ^s window starting at the beginning of 
an echolocation click can be used as the basis for automated 
species detectors. These detectors are competitive with 
other state-of-the-art systems for the detection of 
echolocating marine mammals. It is of particular interest 
that the system performed well even though the 
echolocation clicks extended beyond the bandwidth 
supported by the recording equipment. EERs for this dataset 
ranged between 0.03% and 16.8% for GMMs and 0.70% 
and 15.0% for SVMs. Further work is needed on rejecting 
out-of-set species whose clicks bear a stronger resemblance 
to the target species than to any of the species used to build 
the impostor set.

While other explanations may exist, we also believe that the 
observed degradation of performance when the analysis 
window was shortened is a strong indicator that interference 
patterns may play a role in the spectral patterns. Further 
experiments may help to confirm or reject this hypothesis.
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