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a b s t r a c t

Beaked whales are difficult to detect visually, and researchers have thus proposed using acoustic detection 
and classification. Because of the large data volumes often involved in acoustic detection and classification, 
automatic methods are often used. Here a neural network classification method is investigated. Using 
backpropagation, a feedforward neural network with one hidden layer was trained to classify clicks of 
Blainville’s beaked whales and other odontocetes recorded in the Bahamas. Training and testing data 
consisted of approximately 1600 Blainville’s beaked whale clicks and 3100 clicks from other odontocetes. 
Networks with 2-10 hidden units were trained and tested, with performance curves (ROC curves) 
calculated at several levels of signal-to-noise ratio. Results for most networks were quite good when 
compared with previous classification efforts, with less than 3% errors in both the wrong-classification and 
missed-call categories. Future work includes testing the network on sounds recorded in different noise 
backgrounds and from other populations of Blainville’s beaked whales, and combining it with a detector 
and evaluating the joint performance.

s o m m a i r e

Mésoplodons sont difficiles à voir et chercheurs ont proposé d'employer la détection et la classification 
acoustique pour en trouver. Face à la quantité de données produites par détection et classification 
acoustiques, méthodes automatisées sont souvent utilisées. Ici on present une methode de réseau neuronal 
pour classifier. Un réseau neuronal à rétropropagation non récurrent avec une seule couche cachée a été 
formé pour classifier des clics des Mésoplodon de Blainville et autres odontocètes enregistrés aux 
Bahamas. Les données de formation se sont composées d’environs 1600 clics de Mésoplodon de Blainville 
et 3100 clics d’autres odonotocètes. Reseaux avec 2-10 unités cachées ont été formés et examinés par 
courbes caractéristiques d'opération du récepteur (ROC curves) calculés à plusieurs niveaux du ratio 
signal/bruit. Résultats pour la plupart des réseaux étaient tout à fait bons en comparaison avec des efforts 
précédents de classification avec moins de 3% d’erreurs chez les clics incorrectement classifiés ou 
manqués. Travaux à suivre sont essais du réseau avec les enregistrements venant d’autres niveaus deu bruit 
de fond et d’autres populations de Mésoplodon de Blainville, et en combinaison avec un detecteur, une 
evaluation d’exécution commune.

1. i n t r o d u c t i o n

Beaked and bottlenose whales -  members of the family 
Ziphiidae, including the genera Ziphius, Mesoplodon, 
Berardius, Hyperoodon, and others -  are among the most 
cryptic and least known of all mammal species. They 
inhabit deep-water regions (MacLeod and Zuur 2005), 
which are mostly distant from land and thus relatively 
difficult to study. They spend much of their time 
submerged, making it difficult to see them (Barlow et al. 
2006). Indeed, visual line-transect studies have found 
narrower effective strip widths and lower detection 
probabilities on the trackline for beaked whales than for 
most other cetaceans (Barlow et al. 2006).

Despite being difficult to see, beaked whales have had 
notable interactions with humans: they have stranded in 
places and at times associated with anthropogenic sound use 
[Frantzis 1998; NMFS 2001; Fernandez 2005; Aguilar de 
Soto 2006], and have attracted intense interest from 
management agencies, conservation organizations, and the 
public. A basic first step in preventing harm to beaked 
whales is to detect when they are present in an area of 
concern. Because of the difficulty of detecting beaked 
whales visually, acoustic detection and classification 
methods have been suggested as a tool for aiding in 
mitigation of the effects of human activities. Beaked whales 
are known to produce both echolocation clicks (Johnson et 
al. 2004) and whistles (Dawson et al. 1998). However,
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whistles appear to be relatively rare among all species of 
beaked whales, making clicks a potentially more useful type 
of sound for an acoustic detection and classification system.

A wide variety of methods have been used for detection 
and classification of cetacean sounds. A method that has 
worked well for a number of species is a neural network 
(Ghosh et al. 1992; Potter et al. 1994; Kundu and Chen 
1997; Murray et al. 1998; Deecke et al. 1999; Houser et al. 
1999; Mellinger 2004). Neural networks combine a design 
phase, in which the structure of the network is chosen, a 
training phase, in which the parameters of the network’s 
units are configured, and a testing and use phase, in which 
the network is operated with the parameters fixed. Here a 
method is presented for acoustic classification of clicks of 
Blainville’s beaked whale (Mesoplodon densirostris) and 
other odontocetes using a neural network. Although a 
simple automated detector is used for finding clicks of other 
odontocetes to use in training and testing, the focus here is 
on classification of the clicks.

2. METHODS

2.1 Classification method

An input sound signal is used to compute a spectrogram, to 
which conditioning steps -  spectrum level equalization, 
rectification, and normalization -  are then applied. The 
conditioned spectrogram is then used as input to the neural 
network, resulting in a classification value indicating the 
certainty that a Blainville’s beaked whale click is present.

In more detail, the spectrogram is calculated using a 
frame length of 0.000667 s (64 samples at a sample rate of

96 kHz), overlap of 50%, and a Hann window. This short 
frame size was chosen because of the brief nature of beaked 
whale clicks (Johnson and Tyack 2005), and indeed other 
known odontocete clicks (e.g., Au 1993). At this frame 
length, time resolution is relatively good, while the 
spectrogram filter bandwidth is a relatively poor 6.0 kHz. 
Nevertheless, the upsweeping nature of these clicks can still 
be resolved in these spectrograms (Fig. 1). The logarithm of 
each spectrogram cell is used, compressing spectrogram 
values to a range typically in the range of ±10.
After calculation of the spectrogram, the next step is 
spectrogram level equalization, rectification, and 
normalization. This is similar to the method described by 
Mellinger (2004), and will be explained only briefly here. 
Equalization is performed by subtracting the time-averaged 
spectrum (Van Trees 1968) from each spectrogram frame; 
that is, the spectrum for each spectrogram frame is 
multiplied by a small positive constant a near zero and 
added to the product of the long-term average spectrum and 
1-a. Rectification consists of hard-limiting the minimum 
value in the spectrogram with a (constant) floor value to 
remove small and negative values. Normalization consists 
of subtracting the floor value from each spectrogram cell, so 
that the minimum spectrogram value becomes zero. In other 
words, the time-averaged spectrogram value is calculated 
for each frequency band of the spectrogram; this is 
subtracted from the spectrogram at each time step, a floor 
value is applied, and the floor constant is subtracted so that 
the minimum value in the resulting spectrogram is 0. The 
time constant used for equalization here was 0.02 s, while 
the floor value of the (logarithmic) spectrogram was 0.3 
(this is equivalent to e03~1.35 as a raw FFT value).

time

Fig. 1. An example click o f a Blainville’s beaked whale showing the upsweeping nature o f these clicks. Spectrogram parameters: 
frame size 0.000667 s (64 samples), FFT size 128 samples, hop size 1/16 frame, Hann window, for a filter bandwidth o f 6.0 kHz.

A neural network (Hagan et al. 1996) was designed i.e., without any backward loops. Each hidden unit consisted 
with 192 input elements, a variable number of hidden units, of a weighted sum with bias followed by an arc-tangent 
and 1 output unit. The network was strictly feedforward, nonlinearity. The output unit was linear, consisting of just a
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weighted sum. The number of hidden units was varied 
between 2 and 10 to estimate what the optimal number 
would be. The network was trained using the data set 
described below; batch training in each epoch was used to 
remove any bias in order of presentation. The training 
method was backpropagation (Rumelhart et al. 1987), so 
that network weights were adjusted according to a back- 
propagated error function, and a momentum term was used 
to prevent the network from getting ‘stuck’ in local maxima.

2.2 Data set

The data set consisted of recordings made at the Atlantic 
Undersea Test and Evaluation Center (AUTEC) in the 
Bahamas that contained clicks of Blainville’s beaked 
whales. The whales were visually identified in the field by 
trained observers; the visual sightings coincided with the 
acoustically localized positions of the clicks (Moretti et al. 
2006). Recordings were made at a sample rate of 96 kHz.

The recordings were manually scanned to detect clicks 
of Blainville’s beaked whales. Manual scanning was used to 
remove the possibility of bias in detection of clicks; 
automated methods were not used to detect sounds for use 
in training and testing, as the methods themselves may 
introduce bias. The recordings were annotated to indicate 
the time and frequency bounds of each Blainville’s beaked 
whale click. A total of 1595 Blainville’s beaked whale 
clicks were found, and are henceforth called the BBW 
clicks.

The AUTEC recordings were also scanned to find 
clicks, presumably echolocation clicks, of other 
odontocetes. Known species on these recordings included 
Risso’s dolphins (Grampus griseus) and long-finned pilot 
whales (Globicephala macrorhynchus). This scanning was 
done automatically, using a simple detector that found 
energy in the 20-38 kHz range of the Blainville’s beaked 
whale clicks (Moretti et al. 2006): a ratio of the long-term to 
short-term averages was calculated, and when this ratio 
exceeded a threshold, a click was registered. These clicks 
were annotated similarly to the beaked whale clicks, with a 
total of 3096 clicks found. These clicks were named the 
‘other’ clicks.

2.3 Training and testing

Conditioned spectrograms of the annotated clicks, both 
BBW and ‘other’, were calculated and used for training and 
testing the neural network. Only a portion of the 
spectrogram was used, namely the portion from 15 kHz to 
38 kHz, as this frequency band contained most of the energy 
of beaked whale clicks present in these recordings (Moretti 
et al. 2006). Also, it was important to exclude frequencies 
below 14 kHz, as some of the recordings were filtered with 
a high-pass cutoff at this frequency. Using the entire 
bandwidth of such recordings would provide an unrealistic 
cue to the neural network for distinguishing BBW and other 
clicks. This frequency range contains 16 bands of the 
spectrogram.
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For each click, a conditioned spectrogram centered on 
the click and lasting 0.004 seconds was used. For BBW 
clicks, the center was defined as the midpoint of the 
annotated sound; for ‘other’ clicks, the center was defined 
as the peak of the summed energy in the 20-38 kHz range. 
The 0.004-second spectrogram comprised 12 spectrogram 
frames, for a total of 12 x 16 = 192 cells. It was these cells 
for each click, arranged into a 192-element vector, that were 
used as input to the neural network.

The click data set was randomly divided into training 
and testing data. The BBW data were divided such that 9/10 
of the clicks were used for training, with the remaining 1/10 
used for testing; the ‘other’ clicks were divided similarly. 
The network was trained using the two datasets, with target 
outputs of +0.5 and -0.5 for the BBW and ‘other’ clicks, 
respectively.

2.4 Performance evaluation

Performance was measured using the one-tenth of the BBW 
and ‘other’ clicks reserved for testing. Testing was done by 
calculating the output of the network for the two sets of test 
data -  typical output values were between -1 and 1, though 
other values occurred too -  and applying a set of thresholds. 
For each threshold, the fraction of wrong classifications 
(false positives) and missed clicks (false negatives) was 
calculated; as the threshold was increased, there were fewer 
false classifications but more missed clicks. Varying the 
threshold and calculating the fractions of wrong 
classifications and missed clicks for each threshold yielded 
a parametric curve, the Receiver Operating Characteristic 
curve (Fawcett 2006). Training and testing was done five 
times, and the ROC curve calculated five times, for each 
number of hidden units in the network, and the five ROCs 
were averaged to produce the final results.

The signal-to-noise ratio (SNR) of any sound, including 
a click, is a key parameter in evaluating performance. 
Nearly all methods work well when the SNR is high, while 
only some work well at low SNR. Thus it is important to 
distinguish differing levels of SNR in describing 
performance of a classification method. Here SNR is 
measured by calculating the energy ratio of the signal in the 
20-38 kHz band in a time period ±0.01 s around each click; 
that is, the average band-limited energy of the click is 
measured and is divided by the average band-limited energy 
of the background noise in this time period. Separate ROC 
curves were calculated in 5-dB increments of SNR level, 
i.e., SNRs of less than 10 dB, 10-15 dB, 15-20 dB, and more 
than 20 dB.

3. RESULTS

ROC curves for the neural network are shown in Fig. 2. 
Because of the large range of values, the curve was plotted 
on a logarithmic scale. The left plot shows the ROC curves 
for varying numbers of hidden units, with the number of 
units indicated next to each curve. The right plot shows 
performance for various SNRs for the best network.
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A single-point measure of performance was assessed as 
well: at the 1% wrong-classification rate, a total of 0.6% of 
all BBW clicks are missed.

4. DISCUSSION

Some of the better ROC curves for the neural network are 
entirely less than the 3% error bounds in both dimensions, 
wrong classifications and missed clicks. This performance is 
very good compared with previous detection methods, 
including neural networks, that were applied to baleen 
whale vocalizations (Mellinger 2004, Mellinger et al. 2004). 
Part of the reason for the good performance is that the 
training and testing data were drawn from the same 
recordings of presumably the same whales, so the signals to 
be detected were probably very similar between the training 
and testing data sets. However, this was also true for the 
data sets in the baleen whale detection studies. Another 
reason may be that the clicks studied here are more 
stereotyped than the moans of baleen whales, so that a

network trained to detect clicks in the training data works 
well on other, adjacent clicks in the testing data. In addition, 
Blainville’s beaked whale clicks do not travel very far 
(Moretti et al. 2006), and so must have been produced closer 
to the hydrophone than the baleen whale vocalizations. They 
would therefore have been affected less by variability in 
ocean acoustic propagation. However, successive baleen 
whale vocalizations -  some used for training, some for 
testing -  should have been affected by essentially the same 
propagation conditions, so if they were produced in a highly 
stereotyped manner, they should have arrived at the 
hydrophone with very similar structure, and should have 
been detected equally well. It is also possible that the reason 
is timing: adjacent beaked whale clicks are closer to each 
other in time -  they are typically less than a second apart -  
while adjacent baleen whale sounds are tens to hundreds of 
seconds apart, so that the propagation conditions varied 
more between adjacent baleen whale vocalizations than they 
did between adjacent beaked whale clicks.

Fig. 2. Receiver Operating Characteristic curves for the neural network detector applied to the training data. Values near the 
lower left corner, representing smaller numbers of false detections and missed calls, are better. (a) ROC curve for different 

numbers o f hidden units in the neural network. [The 8-hidden-unit curve is hidden by the 10-hidden-unit curve to the right o f the 
1% false positive point.] (b) ROC curves for the 4-hidden-unit network, with the curve for each 5-dB SNR bin plotted separately. 

The bin with SNR greater than 20 dB had no missed calls, and so could not be plotted on a logarithmic scale.

It appears that the curve for the 4-hidden-unit network 
performed best over much of the range, with the 8-hidden- 
unit network best over the remainder (Fig. 2). However, re­
running the training procedure on another 4-hidden-unit 
network resulted in a performance curve somewhat worse 
than this one, closer to the 10-hidden-unit curve shown here 
to the right of the 1% false positive mark. So the superior 
performance of this network cannot be attributed solely to 
the number of hidden units.

It is possible that the performance shown here is due to 
over-fitting. For instance, the network with 4 hidden units 
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has 192*4+4=772 weights, which were trained using a data 
set of 90% of the whole -  i.e., 1436 BBW clicks and 2786 
‘other’ clicks, or 4222 data points in total. This is about 5.5 
training clicks per weight, which could be insufficient. The 
networks with fewer hidden units are less likely to have 
suffered over-fitting, with e.g. 11 data points per weight for 
the 2-hidden-unit network, and vice versa -  the network 
with 10 hidden units had only 2.2 data points per weight.

Future work includes testing this network on sounds 
recorded from Blainville’s beaked whale populations 
elsewhere in the world and in different noise conditions.

Vol. 36 No. 1 (2008) - 58



One might expect a neural network to perform poorly when 
confronted with different background noise. However, there 
is some hope that this one will do well, as the spectrogram 
conditioning steps reduce the influence of stationary or 
slowly-varying noise -  indeed, of any noise source that is 
stationary on roughly the time scale at which the spectrum 
equalization occurs, 0.02 s.

Also, this classifier needs to be combined with a 
detector and the two evaluated together so that they can be 
useful for detection of beaked whales in the field, and can 
be used to mitigate the effects of human activities, including 
anthropogenic noise, upon these cryptic and little- 
understood animals.

ACKNOWLEDGEMENTS

Thanks to Dave Moretti, Nancy DiMarzio, Ron Morrissey, 
and Jessica Ward for providing the data used here. Thanks 
also to Sara Heimlich and Sharon Nieukirk for the many 
hours spent annotating beaked whale clicks; you hung in 
there. Thanks to Kate Stafford for the French translation. 
The work was supported by Navy awards N00014-03-1- 
0099 from the Office of Naval Research (thanks to Bob 
Gisiner), and by N00014-03-1-0735, N00244-06-P-1870, 
and N00244-07-1-0005 from the Office of the Chief of 
Naval Operations and the Naval Postgraduate School 
(thanks to Frank Stone, Ernie Young, and Curt Collins). 
This is PMEL contribution #3147.

REFERENCES

Aguilar de Soto, N., M. Johnson, P.T. Madsen, P.L. Tyack, 
A. Bocconcelli, and J.F. Borsani. Does intense ship 
noise disrupt foraging in deep-diving Cuvier’s beaked 
whales (Ziphius cavirostris)? Mar. Mamm. Sci. 22:690­
699.

Au, W.W.L. 1993. The Sonar o f Dolphins. Springer-Verlag: 
New York.

Barlow, J., M.C. Ferguson, W.F. Perrin, L. Balance, T. 
Gerrodette, G. Joyce, C.D. Macleod, K. Mullin, D.L. 
Palka, and G. Waring. 2006. Abundance and densities 
of beaked and bottlenose whales (family Ziphiidae). J. 
Cetacean Res. Manage. 7:263-270.

Dawson, S., J. Barlow, and D. Ljungblad. 1998. Sounds 
recorded from Baird’s beaked whale, Berardius bairdii. 
Mar. Mamm. Sci. 14:335-344.

Fawcett, T. 2006. An introduction to ROC analysis. Patt.
Recogn. Lett. 27:861-874.

Fernandez, A., J.F. Edwards, F. Rodriguez, A.E.de los 
Monteros, P. Herraez, P. Castro, J.R. Jaber, V. Martin, 
and M. Arbelo. 2005. “Gas and Fat Embolic 
Syndrome” involving a mass stranding of beaked 
whales (family Ziphiidae) exposed to anthropogenic 
sonar signals. Veterinary Pathology 42:446-457. 

Frantzis, A. 1998. Does acoustic testing strand whales? 
Nature 392:29.

Hagan, M., H. Demuth, and M. Beale. 1996. Neural 
Network Design. Brooks/Cole: Pacific Grove.

Johnson, M., P.T. Madsen, W.M.X. Zimmer, N. Aguilar de 
Soto, and P.L. Tyack. 2004. Beaked whales echolocate 
on prey. Proc. Royal Soc. London B Supplement 6, 
Biology Letters:S383-S386 (DOI
10.1098/rsbl.2004.0208).

Johnson, M. and P. Tyack. 2005. Measuring the behavior 
and response to sound of beaked whales using 
recording tags. National Oceanographic Partnership 
Program Report: Award Number OCE-0427577.

MacLeod, C.D., and A.F. Zuur. 2005. Habitat utilization by 
Blainville’s beaked whales off Great Abaco, northern 
Bahamas, in relation to seabed topography. Mar. Biol. 
147:1-11.

NMFS. 2001. Bahamas marine mammal stranding event of 
15-16 March 2000. Joint Interim Report, National Mar. 
Fish. Serv., Washington, DC. 66 pp.

Deecke, V.B., J.K.B. Ford, and P. Spong. 1999. Quantifying 
complex patterns of bioacoustic variation: Use of a 
neural network to compare killer whale (Orcinus orca) 
dialects. J. Acoust. Soc. Am. 105:2499-2507.

Ghosh, J., L.M. Deuser, and S.D. Beck. 1992. A neural 
network-based hybrid system for detection, 
characterization, and classification of short-duration 
oceanic signals. IEEE J. Oceanic Engr. 17:351-363.

Houser, D.S., D.A. Helweg, and P.W. Moore. 1999. 
Classification of dolphin echolocation clicks by energy 
and frequency distributions. J. Acoust. Soc. Am. 
106:1579-1585.

Kundu, A., and G.C. Chen. 1997. An integrated hybrid 
neural network and hidden Markov model classifier for 
sonar signals. IEEE Trans. Sig. Process. 45:2566-2570.

Mellinger, D.K. 2004. A comparison of methods for 
detecting right whale calls. Can. Acoust. 32:55-65.

Mellinger, D.K., S. Heimlich, and S. Nieukirk. 2004. A 
comparison of optimized methods for detecting blue 
whale calls. J. Acoust. Soc. Am. 116:2587(A).

Moretti, D., N. DiMarzio, R. Morrissey, J. Ward, and S. 
Jarvis. 2006. Estimating the density of Blainville’s 
beaked whale (Mesoplodon densirostris) in the Tongue 
of the Ocean (TOTO) using passive acoustics. Proc. 
IEEE Oceans ’06. 5 pp.

Murray, S.O., E. Mercado, and H.L. Roitblat. 1998. The 
neural network classification of false killer whale 
(Pseudorca crassidens) vocalizations. J. Acoust. Soc. 
Am. 104:3626-3633.

Potter, J.R., D.K. Mellinger, and C.W. Clark. 1994. Marine 
mammal call discrimination using artificial neural 
networks. J. Acoust. Soc. Am. 96:1255-1262.

Rumelhart, D.E., J.L. McClelland, and the PDP Research 
Group. 1987. Parallel Distributed Processing. MIT: 
Cambridge.

Van Trees, H.L. 1968. Detection, Estimation, and 
Modulation Theory, Vol. I. John Wiley Sons: New 
York.

59 - Vol. 36 No. 1 (2008) Canadian Acoustics / Acoustique canadienne


