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a b s t r a c t

When collecting and analyzing marine mammal vocalizations one of the most important goals is to 
automatically extract the pitch/fundamental frequency of the collected calls. In dolphins we can assume that 
there are two main pitched sounds: whistles, which can be described as tonal AM-FM signals, and bursts, 
which can be described as highly harmonic signals. There are three main difficulties with pitch extraction 
on dolphin vocalizations that arise from the nature of the data. First, most underwater recordings are 
restricted to a low signal-to-noise ratio due to reflections, hardware noise and other interferences. This 
constitutes a big challenge for most existing pitch trackers. Second, one has to take into account the 
significant differences in the frequency range of bottlenose dolphin vocalizations compared to humans. 
Finally, dolphin whistles and bursts generally are emitted in two distinct frequency ranges, which result in 
different modes in the analysis data. In this work we compare our novel pitch extraction approach with two 
widely popular algorithms. Our approach uses hierarchy-based hidden Markov models (HMM) with 
cepstral coefficients as features. We quantitatively compare the performance of our algorithm with Yin, 
which is based on a modified autocorrelation method and get_f0, a popular off-the-shelf pitch tracker that 
utilizes linear predictive coefficients (LPC) and dynamic programming. Our approach outperforms the 
comparative methods by at least a factor of 10%.

s o m m a i r e

Pour la collecte et l'analyse de vocalises de mamifères marins, l'extraction de la fondamentale est une étape 
cruciale. Dans le cas des dauphins, nous pouvons considérer qu'il y a deux types de sons voisés : les chants 
qui peuvent être décrits comme des tonalités AM-FM, et les rafales ("bursts") constituées de signaux 
hautement harmoniques. La première des trois difficultés pour extraire le timbre est le très faible rapport 
signal sur bruit dû aux reflections multiples et autres interférences. La seconde consiste à appréhender les 
résolutions harmoniques sur le signal de cétacés par rapport aux traitements connus en parole par exemple. 
Dans ce papier, nous testons notre nouvelle méthode d'extraction de timbre sur un modèle Chaîne de 
Markov Cachée Hièrarchique à partir de coefficient cepstraux. Nous comparons nos résultats à la méthode 
YIN basée sur un calcul d'autocorrélation, et à get_f0 qui est extracteur de timbre classique par 
programmation dynamique utilisant des coefficients LPC. Nous montrons que notre méthode apporte un 
gain de 10% par rapport à ces méthodes.

1. i n t r o d u c t i o n

When analyzing dolphin vocalizations, one of the most 
important tasks is the extraction of the
fundamental frequency/pitch of the desired calls. Several 
methodologies for attempting to automatically extract 
pitch exist as scientists are extensively studying this 
problem, especially with respect to human speech and 
musical recordings.

Most existing packages used by researchers in the 
analysis of dolphin vocalizations require manual 
interaction for the extraction of the desired calls. 
Moreover, they do not extract the pitch at a per-frame 
level; rather they provide a frequency range that is 
manually obtained. These packages, such as Ishmael [1] 
and Raven [2] are widely used in the field and have been 
valuable tools for onsite researchers.
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In order to resolve the problem of pitch extraction on 
dolphin vocalizations without manual interaction we 
utilize methodologies that have been effectively applied 
in the fields of speech and music processing. One such 
technique is Hidden Markov Models (HMM) [3, 4]. 
HMM’s can be used either directly on the unprocessed 
spectrogram of the audio or in combination with the 
extraction of descriptive features e.g. mel frequency 
cepstral coefficients. Another class of algorithms that 
have been used widely in speech processing is based on 
the auto correlation of the signal or some transformed 
variation of it.

These different algorithms need domain engineering 
in order to take into account the intricacies of dolphin 
recordings as compared to human speech. As discussed in 
the introduction, there exist two main differentiating
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issues when analyzing dolphin vocalizations. The first 
and arguably most important difference is that dolphin 
recordings exhibit extremely low signal to noise ratios, 
which require a careful selection of robust features to be 
used.

Next, almost all information in human speech exists 
in the range below 4kHz and 20 kHz for music. These 
ranges could be considered the low register for dolphins 
that can vocalize above 90kHz. This suggests three 
problems with using off-the-shelf algorithms designed for 
speech. Parameters such as filter cutoffs and domain- 
specific tuning curves must be modified to accommodate 
the revised frequency range. Also, the wider signal 
bandwidth of interest necessitates a much higher 
dimensionality of the feature space. Most importantly, 
however, is that the frequency range of harmonic content 
present in a dolphin vocalization can be much higher than 
the Nyquist rate of most commonly used underwater 
recording devices. Unfortunately, this means much of the 
high-frequency content of the dolphin calls is lost during 
recording.

Finally, there are differences in the frequency ranges 
of the various types of dolphin vocalizations. It is thus 
possible to cluster a call based on vocalization type, and 
using a different classifier for each type. This suggests a 
hierarchical or two-stage pitch extraction system. 
Knowing the frequency ranges of each type of call allows 
us to build classifiers with a lower feature space 
dimensionality.

In this paper we proceed by providing an explanation 
of three methodologies used for pitch extraction in section 
2. Section 3 summarizes the experimental results, and 
finally in section 4 we discuss the implications of the 
nature of dolphin calls on the design of pitch extraction 
algorithms.

Algorithm Feature Classifier

Cepstrum+HHMM
256 Cepstral 
coefficients

Hierarchy
HMM

YIN
Modified

Local minimum
autocorrelation

get_f0 LPC residual
Dynamic

Programming
Table 1: Description of pitch extraction methodologies

2. PITCH EXTRACTION METHODS

Three algorithms are used in order to achieve a 
comparative result in the desired pitch extraction task. 
Our novel approach consists of the use of a 
hierarchy/decision based HMM with the use of cepstral 
coefficients. The second algorithm, YIN [6], is widely 
used in speech processing for single pitch extraction and 
is based on a modified autocorrelation method. Finally, 
indicative results from get_f0 [7, 8], a popular off-the- 
shelf pitch tracker are obtained. Table 1 summarizes the 
three algorithms and the features used.

2.1 Cepstral coefficients with hierarchically 
driven hidden Markov models (HMM)

Hidden Markov models (HMM) [3, 4] have been 
extensively used in many natural sequences such as 
speech, language and handwriting. They provide us with a 
valuable tool for the analysis and extraction of 
information of time dependent data.

As previously discussed, there needs to be a robust 
selection of features that will be able to overcome the 
inherent low SNR present in the recordings. In this work 
the use of the cepstrum is preferred given its ability to 
highlight the pitch of a given signal. Through the existing 
literature the cepstrum [5] has been successfully 
employed in speech to obtain the desired pitch. It assumes 
a source-filter model and provides a homomorphic 
deconvolution thus separating the detailed excitation part 
of the signal from the broad, filter part.

We utilize the real cepstrum using the observation 
that a pitch peak will appear at the high n coefficients. 
The real cepstrum is defined as the inverse Fourier 
transform of the log magnitude of the spectrum of our 
signal. This can be seen in Equation 1.

'  (i)
Fa = ) cfeJ

Figures 2, 3 show an example of the cepstral 
coefficients for one call.

Figure 1: Description of HHMM system

We remove, as is common, the first coefficient, 
which captures the average energy of the original signal.

Arguably, the use of the spectrogram or even a 
normalized version of it could have been a suitable 
feature, it is clear that it will not provide a good noise 
suppression feature given that noise will be distributed 
across all frequencies, thus interfering with the task at 
hand.

Domain engineering suggests the existence of 
narrowband clusters of calls within the wide frequency 
range of vocalizations. In this work, analysis of the data 
as will be seen in section 4.1 dictated the use of a decision 
level. The idea behind this implementation is that there is 
an inherent bimodality in the data that can be taken 
advantage of with the use of a hierarchy. Initially, two 
HMM’s are created with different number of hidden states 
that correspond to different frequency ranges of the calls. 
For every input vector both HMM’s are evaluated using 
the forward algorithm and the one that gives us the 
highest likelihood is activated for the implementation of 
Viterbi decoding [3, 4], thus obtaining the most likely 
path across the hidden states.
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Figure 1 provides a schematic description of the utilized 
system. It is evident from Figure 1 that two different 
HMM’s are used each of them with different parameters 
representing two different frequency ranges respectively.

Each HMM is defined through parameters, X that are 
extracted from the data. In this work both HMM’s are 
continuous, implying that each state, q, can be represented 
with a single Gaussian probability density function:

where the states sets q1, q2 represent the frequency 
ranges of approximately 2.2kHz-11kHz and 440Hz- 
740Hz respectively. A noise state is also added for every 
HMM in order to capture the lack of pitch in a particular 
frame. Each state, q represents a pitch delay number that 
can be directly mapped to a specified frequency. Also, n1, 
n2 define the priors for state sets q1, q2 respectively as 
obtained from the statistics of the ground truth data. A1, 
A2 define the transition matrices for each HMM directly 
obtained from our ground truth and E1, E2 are the 
emission distributions for each state set. These are single 
256 dimensional Gaussian distributions obtained from the 
extracted cepstral coefficients.

Once the parameters of the HMM’s have been 
extracted we proceed to evaluate every call in order to 
identify its frequency range. This is shown in Equations 4, 
5. The last stage of the system employs Viterbi decoding 
[3, 4] in order to find the most likely path across the 
evaluated state set, thus extracting the desired pitch at 
every frame, Equation 6.

(4)

(5)

(6)

Where is a sequence of observations,
(ft £ ■  1,-2 is a sequence of the hidden states, 
(ffrf- 1,2 ..I T is the maximum probability state path and 
X1 are the parameters of the HMM.

2.2 YIN: A fundamental frequency estimator

Yin, created by de Chevigne and Kawahara [6], is a 
widely used algorithm for the estimation of the 
fundamental frequency/pitch of speech or monophonic 
musical sounds. It is based on a modified autocorrelation 
method and is extremely successful in extracting single 
pitches. Its popularity is also enhanced by the fact that it 
is a relatively simple and efficient algorithm, thus 
minimizing the computational cost.

Since our goal is to extract the fundamental 
frequency of dolphin vocalizations we can assume that 
our signal xt is periodic with period T.

As mentioned previously YIN is based on the 
autocorrelation of the signal as defined in Equation 7. 

f - fV

. - = (7) 
J - f t L

where is the autocorrelation at lag x calculated at 
time t and W is the integration window size.

We can also see that Equation 6 holds if we take the 
square and average over a window, W. This implies that a 
difference function can be formed where an unknown 
period may be found while searching for those values of r 
for which the function is zero. The function is seen in 
Equation 8.

^  ■ (8)

One of the problems that the difference function creates is 
that it has the value of zero at zero lag and often times a 
non-zero value at the lag corresponding to the period due 
to imperfections in the periodicity. This indicates that the 
method will fail since it will always choose for the zero 
lag. In order to alleviate the above problem, the method 
proposes the use of the cumulative mean normalized 
difference function instead of the one in Equation 8. This 
new function is shown in Equation 9.

(9)

This new function is actually one at zero lag and 
stays large at small lags.

There are several more steps that can be employed in 
order to ensure a better estimate and these steps can be 
seen in detail in [5]. Overall, the desired pitch can be 
obtained by picking the smallest value of the lag/pitch 
delay, r that gives the minimum d . An example of the 
YIN function for a specific call as well as the cepstral 
coefficients for the same call is shown in Figures 2-4.
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Figure 2: Whistle example

Figure 3: Cepstral coefficients

Figure 4: YIN coefficients

There are several more steps that can be employed in 
order to ensure a better estimate and these steps can be 
seen in detail in [5]. Overall, the desired pitch can be 
obtained by picking the smallest value of the lag/pitch 
delay, r that gives the minimum d . An example of the 
YIN function for a specific call as well as the cepstral 
coefficients for the same call is shown in Figures 2-4.

2.3 Get_f0: A software package for pitch 
extraction in speech

Get_f0 is one of the most popular pitch tracking 
algorithms. It is part of a widely used software package 
called Entropic Signal Processing Systems (ESPS) and 
Waves [8]. The majority of researchers in speech 
processing are familiar with this package. It is based on 
Doddington’s and Secrest’s 1983 algorithm [7] for pitch 
tracking in speech systems.

This method utilizes the linear prediction coding 
(LPC) residual error signal in order to extract the desired 
pitch candidate. LPC is based on the source filter model 
as seen for the cepstrum in section 2.1. This indicates that 
we theoretically expect that the residual signal will 
provide us with the excitation information.

To best alleviate some problems of high frequency 
noise, the authors devise and employ a de-emphasis filter 
as a pre-processing tool, whereby they low pass filter the 
residual signal in voiced regions of speech and high pass 
filter in unvoiced regions. These filters need to be 
redesigned for dolphin vocalizations.

To extract the candidate pitch at each instance the 
peaks of the normalized cross-correlation are acquired, 
Equation 10.

(10)

Where r is the lag and m is the number of samples to be 
correlated. As previously mentioned, the candidate pitch 
values are the lags at the peaks of C(k) and the 
“goodness” measure is the corresponding value of C(k) at 
those lags.

After having extracted the above values, dynamic 
programming [9] is employed in order to extract a 
smoother pitch contour. This requires some sort of 
penalty metric in order to decide what the best path 
amongst the candidates is. The cumulative penalty for 
each pitch candidate consists of a transition error in going 
from one frame to the next. This methodology provides a 
good pitch extractor specialized for speech.

3. EXPERIMENTAL RESULTS

In this section we provide the comparative experimental 
results as obtained from the methodologies described in 
section 2.

It is important to provide information on the data that 
was used for the experiments. Recordings from captive 
dolphins were obtained. From these recordings, whistles 
and bursts were manually extracted so that there would be 
no overlapping vocalizations. Overall, 110 calls were 
extracted of balanced type. These calls have a mean 
duration of 0.5sec and a mean SNR of 9.7dB. The low 
SNR was partly a result of analog to digital conversion 
given the lack of high precision hardware at the time of 
the recordings. The SNR was obtained by averaging the
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peak SNR, Equation 10, at every frame, which was 
computed through the short-time autocorrelation function.

«■“-“«SW <n)
Where r(0) is the energy of the signal plus the noise and 
r(x=p) is the energy of the signal with period at lag x=p.

To be better able to extract meaningful conclusions, 
ground truth was obtained by bootstrapping (semi-hand 
labeling for every frame). Initially, YIN was employed 
and then visually inspected in order to correct possible 
errors. Evidently, the extraction of ground truth allows for 
some errors due to resolution and rounding limitations 
given that we extract a pitch delay/lag for every frame. It 
is expected that such ground truth may incorporate some 
bias in the final results.

After obtaining the ground truth, the analysis of the 
data indicated an inherent bimodality. That led us to the 
choice of the hierarchy driven hidden Markov models for 
our approach. This is clearly shown in Figure 5. Two 
distinct frequency ranges are evident, thus allowing us to 
insert a decision level in the system. Arguably, one might 
explore the reasons for not choosing a single dynamic 
model/HMM for this task. In several experiments, a single 
system suffered from erroneous “doublings” and/or 
“halvings” at a per frame level caused by the fact that the 
cepstrum captures the presence of noise e.g. hardware, 
reflection noise.

Table 2 provides the average per frame accuracy for 
all three methods. It is worth noting that there are three 
different metrics in our results: Strict rate, which implies 
that the resulting pitch is an exact match with the ground 
truth, relaxed rate of ±1 pitch delay (lag), and finally a 
relaxed rate of ±2 pitch delays (lag). Basically, this 
implies a soft boundary or range of acceptable error. The 
relaxed rates correspond to an approximate 1.5% and 3% 
deviation from the ground truth, which in many 
applications could be acceptable. The same results are 
provided schematically in Figure 6. All results are 
generated using leave one out cross validation, otherwise 
known as round-robin.

Data Histogram

Figure 5: Data histogram. The two ellipses show the two 
modes o f the data

_________ Average per fram e accuracy (%)
HMM cepstrum Yin get f0

Strict Rate (%)
66.12 47.09 29.3

Relaxed Rate ±1 pitch delay (%)
76.01 54.35 N/A

Relaxed Rate ±2 pitch delay (%)
77.9_____________55.11_____________N/A

Table 2: Comparative results

Strict Rate

Relaxed Rate ±1 (%)

>  0 10 20 30 40 50 60 70 80 90 100 

HHMM frame rate (%)

Figure 6: Comparative results o f the YIN frame rate vs. the 
HHMM  frame rate for every call

Whistle call

Figure 7: Example o f successful pitch extraction using 
hierarchy HMM

In all cases it is apparent that our novel approach is 
superior to the baseline algorithms by over 10%. It is also 
interesting to note that get_f0 fails to give us comparable 
results for the relaxed rates due to the fact that it is highly 
tuned for human speech and is not able to track the 
desired pitch in dolphin vocalizations, which exhibit a 
much wider frequency range.

Furthermore, Figure 6 provides comparative results 
for each call for the novel approach of the hierarchy 
driven HMMs with the cepstral coefficients and the YIN 
algorithm. As it is clearly seen in the figures there is a 
shift of the points towards the right side of the plots. This
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indicates that our methodology is superior and has a 
higher percentage of calls that are achieving above 80% 
frame accuracy.

In addition, an interesting fact arises from these plots. 
There appear to be a constant number of calls that are 
giving us a near 0% percent match. This discrepancy is 
caused due to the error that is introduced by the hierarchy. 
Basically, for these calls the decision of which frequency 
range they belong to is false, and thus the pitch extraction 
fails completely.

Lastly, Figures 7, 8 provide indicative examples of 
success and failure of the implemented algorithms. In 
both figures, the original spectrogram is shown and the 
comparative results are overlaid on the short time 
autocorrelation in order to provide a good visualization 
tool with results extracted from YIN.

In Figure 7, our implementation is closer to the 
ground truth where YIN actually exhibits a number of 
errors due to noise interference that leads to wrong peak 
picking.

In Figure 8, both YIN and the hierarchy driven HMM 
fail to extract the desired pitch again, due to the extremely 
low SNR as well as the ambiguity of the type and range of 
the call. In this case the evaluation stage of our system 
fails to classify this call in the correct range.

Figure 8: Example o f fair pitch extraction using hierarchy 
HM M

4. CONCLUSIONS

As described in the previous sections, this work provides 
a comparative view on the success of three different pitch 
extraction algorithms for dolphin vocalizations. As 
evident from the experimental results presented in section 
3, our novel approach of using hierarchy driven hidden 
Markov models with cepstral coefficients outperforms the 
other two popular methods in speech and music, YIN and 
get_f0.

The success of our approach is based on the idea of 
the hierarchy, which was implied from the nature of our 
data as seen in Figure 5. The existing bimodality allowed 
us to create two different HMM’s with two different sets 
of states. This immediately reduced the state space

dimensionality of our system, thus minimizing the 
computational cost, while alleviating problems when 
training our model.

It is worth noting that the bimodality in the data 
needs to be explored in a larger body of data to extract 
meaningful conclusions in terms of the generic aspect of 
our method. Our data set needs to be enhanced so that we 
can extract possible biases from these specific recordings. 
Moreover, it would be interesting to compare the 
differences between recordings of captive dolphins versus 
dolphins in the wild.

Another reason for a larger labeled data set is to 
avoid pitfalls of over fitting when resorting to training 
testing methods such as leave one out cross validation.

Also, it should be noted that the hierarchy introduces 
an extra error term when it comes to deciding which range 
the call belongs to. Overall, this error accounts for only 
4% of the total calls.

The use of the cepstral coefficients as a feature is 
considered a good match given that it showed a better 
descriptive feature than using the magnitude of the 
spectrum.

Also, it appears to be more resilient to noise. 
Furthermore, we can make assumptions about the location 
of the pitch peak, thus eliminating a number of 
coefficients and reducing the dimensionality of the feature 
space. This could also lead to a more computationally 
efficient algorithm.

Lastly, it is worth noting that YIN was far superior to 
get_f0. Its simplicity and efficiency make it a good 
candidate in simple cases. However, YIN is not so 
resilient to an increased noise level present in the 
recordings. Interestingly though, both YIN and our 
approach utilize dynamic programming/Viterbi, which 
could be an advantage to get_f0.

Overall, there are several steps that can be taken to 
improve the algorithm presented in this work. In 
summary, this paper clearly shows that a choice of good 
features and the use of a classifier which can be tuned 
according to a given data set can provide us with very 
satisfactory results for the task of pitch extraction.
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