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a b s t r a c t

Analysis of click-type signals in the presence of noise with time-varying statistics is a challenging task, 
especially in low signal-to-noise ratio conditions. This well-known problem is commonly present in 
underwater passive acoustics applications. In this paper we present a novel solution for this dilemma as 
applied to marine mammal acoustics - a well-established basis for marine mammal study and protection.
The adaptive orthogonal Schur-like algorithm is proposed to classify medium-frequency odontocete clicks.
This technique is characterized by excellent convergence behaviour, very fast parametric tracking 
capability and robustness. The difficulty of recognition (classification) resides in the extraction of the 
signal's intrinsic information; i.e. extraction of an efficient signal signature. It is expected that the distances 
between the signatures within the class are minimal (small intra-class variance) and between the classes are 
maximal (high inter-class variance). This condition ensures a good recognition performance (separability of 
classes). The 2D signature proposed in this work and based on a selected set of the time-varying Schur 
coefficients assures this requirement. When compared to the classical Fourier approach, the proposed 
recognition method is four times as efficient for inter-class distances and twice as efficient for intra-class 
distances. The results of the recognition are given for sperm whale (Physeter macrocephalus) regular clicks 
and striped dolphin (Stenella coeruleoalba) nacchere clicks. They are very satisfactory and promising for 
other applications. The proposed technique can be easily implemented in real-time applications such as 
underwater acoustic monitoring systems.

r e s u m e

Les analyses des signaux du type cliquetis noyés dans un bruit dont les statistiques sont temps-variant est 
un challenge, surtout dans des conditions de rapports signal-sur-bruit défavorables. Cette problématique 
largement connue est couramment présente dans des applications de l’acoustique passive sous-marine. 
Dans cet article, nous présentons une solution novatrice appliquée dans le domaine de l ’acoustique des 
cétacés qui actuellement constitue une base bien établie de l ’étude et la protection des mammifères marins. 
L ’algorithme orthogonal adaptatif de Schur est proposé pour classifier des clics de 2 espèces d'odontocètes. 
La technique introduite est caractérisée par une excellente convergence, un très bon suivi des paramètres et 
est robuste au bruit. Les difficultés de reconnaissance (classification) résident dans l’extraction de 
l ’information intrinsèque du signal i.e. la mise en forme d’une signature efficace du signal. Il est attendu 
que les distances entre les signatures de la même classe soient minimales (petite variance intra-classe) et 
pour les différentes classes soient maximales (grande variance inter-classe). Cette condition assure de 
bonnes performances de reconnaissance (séparation des clases). La signature bidimensionnelle proposée 
dans ce travail et basée sur un ensemble sélectionné des coefficients temps-variant de Schur assure cette 
exigence. En comparant cette méthode avec l’approche classique de Fourier le gain d’efficacité est 
multiplié par 4 pour les distances inter-classe et par deux pour les distances intra-classe. Les résultats de la 
reconnaissance sont donnés pour les clics usuels de cachalots (Physeter macrocephalus) et les clics du type 
nacchere de dauphins bleus et blancs (Stenella coeruleoalba). Ils sont très satisfaisants et promettant pour 
d'autres applications. La technique proposée peut être facilement implémentée dans des applications temps- 
réel telles que des systèmes acoustiques de surveillance sous-marine.

1. i n t r o d u c t i o n

The click-type signal is characterized by short duration 
(microseconds to milliseconds), wide bandwidth (quasi flat 
spectrum), and is generally far from stationary. The

processing of such a signal is a complex and challenging 
task, especially in low signal-to-noise ratio conditions. This 
becomes more difficult when the statistics of the 
background noise are time-varying. Click-type signal 
analysis requires signal processing techniques that fulfil the
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following principal conditions: robustness (to non-stationary 
noise), good time resolution (a click can last from tens to 
several hundred samples), efficient extraction of the signal’s 
intrinsic characteristics (for detection, recognition, etc. 
purposes). A variety of methods are used for automatic 
recognition of transient signals. Some of them employ time 
and/or frequency representations. Other methods transform 
the signal to another space. These representations can be 
used for classification (e.g. template matching). Different 
parameters can be extracted for statistical classification. 
Many different classical (Fourier transform and its 
derivatives, parametric filters, time domain statistics) and 
advanced techniques (wavelets, Hilbert Huang Transform, 
High Order Statistics) are commonly used in processing of 
non-stationary brief signals, although not all are well suited 
for such processing. Classical temporal techniques use 
parameters such as duration, mean, variance, energy, 
amplitude, instantaneous phase, zero crossing rate or 
moments [16]. The bio-acoustics community widely uses 
Fourier based techniques and parameters such as principal 
frequency, bandwidth, cepstral coefficients or variations of 
the frequency or of the phase [17, 18]. Time-frequency 
representations are also used for signal description and 
classification [13]. The comparison of AutoRegressive (AR) 
modelling and the wavelet transforms as feature extraction 
tools is given in [19]. The use of neural networks for 
underwater signal processing is proposed in [20]. The 
chosen technique depends on the application and other 
factors such as implementation or budget issues. For 
example, for acoustic monitoring systems, real-time 
processing is paramount. Therefore it is expected that 
complex and time consuming methods would not be used, 
though there may be deterioration in performance.

In this paper we introduce the adaptive orthogonal 
Schur-like parameterization, a novel technique for analysis 
of brief acoustic signals. The adaptive Schur algorithm as 
shown in this paper is a powerful, low complexity technique 
that is also very easy to implement. A first study of this 
technique as applied to underwater passive acoustics is 
presented in [1]. This technique has already been applied to 
detection and analysis of sperm whale clicks [2]. This paper 
is an endeavour to classify mid-frequency marine mammal 
clicks.

The adaptive Schur algorithm is composed of two steps. 
First, recordings are analyzed to extract all non-stationary 
transients (detection of clicks) [2,7]. Secondly, the extracted 
clicks are assigned to different classes (recognition of 
clicks) [7]. We introduce a click-type signature that is based 
on a selected set of the time-varying Schur coefficients. The 
objective of this study is to recognize (classify) broadband 
acoustic transients emitted by two odontocete species, the 
sperm whale (Physeter macrocephalus) and the striped 
dolphin (Stenella coeruleoalba). The sperm whale regular 
clicks [3-5] and striped dolphin nacchere clicks [6] have 
very similar time and frequency characteristics; i.e. duration 
of a few milliseconds and a wide bandwidth [7]. These two

odontocete species were chosen because they seem to 
represent the most difficult scenario for marine mammal 
click-type calls: similar duration and frequency bandwidths 
that overlap by more than 90% [7].

The clicks considered here are emitted in sequences. 
The principal parameter characterizing the sequence of 
clicks is the ICI (inter-click interval). This slow time- 
varying parameter defines the time distances between 
consecutive clicks within the sequence of clicks. Therefore, 
the recognition of such clicks can be carried out in two 
ways: by a global and a local approach. In this paper we 
consider the latter approach, which means that the 
classification is performed on every single click. This 
method is much more challenging than the global approach. 
In the global approach, the distinction between sperm whale 
regular clicks and nacchere striped dolphin clicks can be 
performed by exploiting the ICI, which is about 0.5-2 s for 
the sperm whale and about 0.1 s for striped dolphin. The 
problem appears when clicks are missing or when different 
click sequences overlap, making estimation of the ICI very 
complicated. The local classification approach applied to a 
sequence of clicks can be considered as a pre-processing 
step to the global classification approach (support for the 
ICI estimation).

In this paper, we give results of the recognition 
obtained on sperm whale regular clicks (called Pma clicks) 
and striped dolphin nacchere clicks (called Sco clicks). We 
discuss the performance and present perspectives.

2. MATERIAL AND METHODS

Sperm whale clicks were recorded in the canyon of Toulon 
(Mediterranean Sea, France) (42°58’N, 5°51’E, 42°39’N, 
5°43’E, 42°39’N, 6°30’E, 42°58’N, 6°27’E) in August 
2004 [8]. The recordings of striped dolphin clicks were 
made in the Ligurian Sea in 2002 [6]. Both recordings were 
performed with the omnidirectional hydrophone (0-30 kHz) 
towed at a depth of about 50-100 m. The acoustic signals 
were recorded with a 44.1 kHz sample rate and 16 bit 
resolution via a commercial audio PC card.

2.1 Adaptive Schur Algorithm

The adaptive Schur-like parameterization [9,10] was 
proposed for the recognition of the bio-acoustic clicks 
emitted by sperm whales and striped dolphins. More 
detailed discussion of this technique as applied to short-term 
stochastic signal processing is given in [7].

The adaptive Schur algorithm, also called the 
innovations filter or whitening filter, is in fact an optimal 
orthogonal linear prediction filter. At every time-instant the 
filter calculates an optimal value of the signal at instant t 
taking into account all its past values. The solution of the 
prediction is calculated from the orthogonal projection of 
the current signal on its past samples. The forgetting factor 
is introduced to weigh the past samples [7]. The filter is
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always stable numerically because all the signals within the PC: processor 1.6 GHz, RAM memory 1 GB). This relation 
filter are normalized to unity. is given in fig.2.

Table 1 -  Mathematical complexity of the algorithm (number 
and weight of mathematical operations for time and order

Figure 1. Adaptive orthogonal Schur filter

The ladder-form orthogonal filter is adaptive (in time) 
and recursive (in order) (fig.1, eq. (1)-(2)). The filter is 
composed of N  identical sections 0n(t) (the number defines 
the filter order) which are completely defined with second- 
order statistics by the time-varying Schur coefficients pn(t) 
(also called the reflection coefficients). The adaptive Schur 
algorithm is defined by the three following equations:

p[n  + 1, t) = p (n  + 1, t - 1 )AB -  e (n, t )r  (n, t - 1 ) 

e[n + 1,t) = CB_1 \Le (n ,t) + p[n  + 1,t )r  (n ,t - 1 (1)

r (n + 1, t) = CA~l [p (n  + 1, t )e (n, t ) + r (n, t - 1 )]

where A, B and C are as follows:

A = 1̂ -  e2 (n, t ^

= (1 -  r 2 (n, t - 1))V2 (2)

C = (1 V  (n + 1, t ))^V2

B =

The variables p(n,t), e(n,t) and r(n,t) denote respectively the 
time-varying Schur coefficient, the normalized forward 
prediction error and the normalized backward prediction 
error on the nth section at the time t. The requisite number 
of sections depends on the signal type. This is closely 
linked to the signal energy distribution on the filter 
sections. As it was demonstrated in [7], the energy on the 
filter sections globally decreases as the number of sections 
increases. In practice the order of the filter is chosen 
between 10 and 20.

The signal y(t)te{i,...T} input to the filter is transformed

into the 2D matrix 0  NxT = [01,.. e n ] (see fig.1):

P(1,1) P(1,2) 

p(2,1) p(2,2)

p(N,1) p(N,2)

P(1,T)

P(2,T)

P(N,T)_

(3)

The matrix columns represent time and the rows 
represent order. In our work real-time processing is 
essential. Therefore we present the mathematical 
complexity of the algorithm in table 1. We also estimated 
the algorithm processing time for a 1 second signal sampled 
at 44.1 kHz as a function of the filter order (commercial

loo ps)
Operation Number of cycles 

According to IEEE 
Standard 754

Number of 
operations 

Order loop n

Number of 
operations 
Time loop t

+ or - 1 6 3
* 2 12 5
V 5 3 1
/ 5 3 1

The adaptive Schur algorithm has two loops: the major 
loop in time t and the minor loop in order n . The 
mathematical complexity of the algorithm for the minor 
loop is O(N) and for the major loop is O(T*N). Due to 
recursive and adaptive processing the complexity is linear, 
which is very attractive for practical implementation.

Complexity of the algorithm

5 ID 15 253 25 30
Order of the filter

Figure 2. Computational complexity of the technique

This signal analysis is based on the matrix of time- 
varying Schur coefficients:

@(n,t) = j/?(n,t): n e{1,...,N }, t e{1,...,T }j (4)

which reflect the second-order statistics of the filtered 
signal. They gravitate towards their optimal values when 
the signal is (quasi) stationary. When there is an important 
variation in the signal covariance, the time-varying Schur 
coefficients reflect these changes.

2.2 Recognition of click-type signals

Processing of the click-type signal is especially challenging 
due to its short duration and wide bandwidth. Classical 
methods for click-type signals analysis have difficulty 
capturing the signal’s intrinsic information. There is a need 
for new techniques that are better suited for this task. Here, 
our method is appropriate for transient signal recognition. 
The analysis is based on the 2D Schur-like representation 
i.e. the set of time-varying Schur coefficients.

Figure 3. Generation of 2D orthogonal (Schur-like) signature
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The recognition problem posed in this work is 
supervised, i.e. we use a specific set of click-type signal 
representatives for each class (sperm whale regular clicks 
(“clicks Pma”) and striped dolphin nacchere clicks (“clicks 
Sco”)). The proposed signature (pattern ScTV -  Schur time- 
variant) of the click-type signal based on time-varying 
Schur coefficients is successful for discrimination (high 
inter-class variance) and invariance (low intra-class 
variance).

The signatures ScTV for both classes are calculated 
according to the method presented in fig.3 and are shown in 
fig.4. A random set of clicks for each class (sperm whale 
and striped dolphin) input to the adaptive Schur filter results 
in a set of the time-varying Schur coefficients (2D 
representation, see eq. (3) and fig.4). The signature ScTV is 
calculated as the mean of a set of patterns for that class. In 
our study we used 50 clicks chosen randomly from datasets. 
These sets are used for determining the most discriminating 
K  Schur coefficients. First, for the two classes Pma and Sco, 
we calculate the vector of discrimination H1xN :

V H in  (0 = 11 Ppma - p ? co\\ (5)
i= 1 . . .N  H II

and with:

H (1) >... > H (j )  >... > H (N ) chmce >max(H )1xk (6)
]

For comparison purposes we decided to also evaluate 
the performance of a widely used classical recognition 
technique based on the Fourier technique. The Fourier 
signature is given as a set of 32 Fourier coefficients. The 
number of Fourier coefficients was chosen to capture the 
global spectral structure of the signal, and not local changes, 
which can be influenced by noise or propagation effects.

The signal description (recognition) aims to obtain the 
signature (pattern) that most effectively represents the 
signal. Ipso facto, it is expected to reach a high 
discrimination between classes and a high invariance of the 
signature within each class. In this work we proposed two 
supervised classification approaches:

- template matching,
- statistical.

For the first approach we use four different dissimilarity 
metrics: correlation coefficients, and Euclidian (dE), 
Chebyshev (dCh) and Minkowski (dM) distances, which are 
defined as follows (for two signals x and y):

dCh = max| x i -  y \  (8)

1/m

• (9)
I p

d M  = j^Xi - y)

Finally, we conserve K  of the most unlike (between 
classes) Schur coefficients, which guarantee very good class 
separability. The signatures ScTV are calculated for three 
different frequency bands: low (LF, 1-4kHz), medium (MF, 
7-10 kHz) and high frequency (HF, 12-16 kHz) bands. The 
signatures ScTV for sperm whale regular clicks (Pma) and 
striped dolphin nacchere clicks (Sco) for each of the three 
bandwidths are presented in fig.4.

Signature S c-. of Pma dick Signature Sc- of Pma dck Signature Scr. of Pma ckk

Signature Sc-. of Sco dck Signature S o . of Sco ckk Signature Scr. of Sco dck

Figure 4. Signatures Sctv (2D) o f Pma and Sco clicks 
First line is for Pma clicks and second line is for Sco clicks 

The signature Sctv is given for three different frequency bands (in 
columns): LF (1-4 kHz), MF (7-10 kHz) and HF (12-16 kHz)

In the statistical approach, we proposed three 
parameters (variables u1, u2 and o3) calculated from the 2D 
Schur representations (fig.4):

=P2 (T )~P3 (T ) (10)

^  = Z  Y t Z i p"j ( 0 ,  p *i= p j ~ m n i p j ^ )) (11)
je{7,8,9}lv i=1 )

N  T

°3=VnZẐ j2(i) (12) 
j =1 i=1

These variables allow an almost perfect discrimination 
between sperm whale regular clicks and striped dolphin 
nacchere clicks. They were chosen a posteriori based on 
our two datasets.

3. RESULTS AND COMMENTS

The performance of the click-type signal recognition is 
obtained from two odontocete calls: sperm whale regular 
clicks and striped dolphin nacchere clicks. We present the 
similarities between these two categories of clicks in time 
and frequency domains for LF, MF and HF bandwidths (see 
table 2).
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Table 2 -  Correlation results between sperm whale (Pma) 
clicks and striped dolphin (Sco) clicks in time and frequency 
domains for four LF (1-4 kHz), MF (7-10 kHz), HF (12-16

| LF band | MF band | HF band | Wideband
Correlation : click Pma — click Pma

Time 0.421±0.12 0.411±0.10 0.391±0.12 0.264±0.09
Frequency 0.709±0.13 0.744±0.11 0.722±0.11 0.642±0.16

Correlation : click Sco — click Sco
Time 0.459±0.14 0.316±0.7 0.29±0.08 0.368±0.12
Frequency 0.740±0.15 0.671±0.14 0.684±0.10 0.741±0.15

Correlation : click Pma — click Sco
Time 0.311±0.09 0.320±0.07 0.318±0.07 0.201±0.06
Frequency 0.573±0.14 0.660±0.13 0.694±0.11 0.501±0.10

We note that neither in time nor frequency domains is it 
possible to propose a threshold for distinguishing these 
classes. First, this is due to the fact that both clicks classes 
have high variance within-class (we obtain low values of 
the correlation between clicks of the same species). This 
diversity results from the natural intrinsic richness of the 
clicks and from propagation effects. Secondly, the Pma and 
Sco clicks are very similar in duration and frequency band, 
and thus the values of the correlation between clicks of the 
two species are significant.

Method FFT-Correlation Method Sew - Correlation

Pma Sea 

Method FFT- Euclidien

5

:^l
Pma Sco

Method Scjv - Minkowski

Pma Sco

Signature

B
Figure 5. Classification performance for Pma and Sco clicks 

(mean values of intra- and inter- class distances in dB)
The results are given for LF band (Template Matching)

The performance of classification by the template 
matching approach is given in fig.5-6. The patterns of each 
class are compared to the signatures Pma and Sco. The 
mean values of these intra-class and inter-class distances 
are given in fig. 5. These values are normalized for each 
class to 0 dB for the intra-class distances. This means also 
that the inter-class and intra-class distances should be 
minimal. The distribution of values of the inter-class and 
intra-class distances is given in fig.6 (for the Minkowski 
metric). We note that the proposed signature Scw  ensures 
lower intra-class distances and higher inter-class distances, 
which results in a much improved discrimination 
performance. When compared to the performance of the

Fourier based recognition technique, the proposed method 
is four times more efficient for inter-class distances, and 
twice as efficient for intra-class distances (see fig.6). The 
separability of clicks, which was impossible in the time and 
frequency domain, becomes attainable in the space of the 
time-varying Schur coefficients.
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Figure 6. Histogram of intra- and inter- class distances for the 
Minkowski metric (Template Matching)

The parameters proposed in eq. (10)—(12) allow the 
accurate discrimination between sperm whale regular clicks 
and striped dolphin nacchere clicks (see fig.7). However, 
we note that these variables for sperm whale clicks (black 
in fig.7) are somehow correlated. This can be attributed to 
different diving phases of sperm whales. The classification 
results depend also from the performance of the data 
acquisition. This requires further research and analysis.

Statistical classification
tesod on Sc tv reprostfitaoon Projection on C perarneCw

Parameter B Parameter A

Prqecnon on A parameter

•It
Parameter A 

Protection on B parameter

Figure 7. Statistical classification of Pma (black) and Sco 
clicks (red) in 3D representation space (parameters A, B and 

C correspond to variables o 1, o 2 and u 3)

The correlation results shown in table 2 and the 
classification results based on the Fourier signatures (fig. 5) 
compared to the performance of the recognition method
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proposed in this paper let conclude that the two proposed 
recognition approaches, i.e. the template matching and the 
statistical classification based on the 2D orthogonal Schur- 
like representation, are very efficient and robust for 
underwater click-type signal analysis.

4. CONCLUSION

In this paper we presented a novel click-type signal 
recognition method based on the time-variant Schur 
algorithm. This orthogonal technique appears well suited 
for underwater signal processing. The adaptive and 
recursive nature of the proposed algorithm is very attractive 
for real-time processing. We proposed an efficient 2D 
signature for click-type signals. We evaluated our 
recognition method on sperm whale (Physeter 
macrocephalus) regular clicks and stripped dolphin 
(Stenella coeruleoalba) nacchere clicks. These two species 
clicks present some common characteristics that make 
classification quite challenging, especially for the classifier 
based on the Fourier transform. The recognition results 
showed that concerning classification performance and 
resistance to noise, the 2D Schur signature is considerably 
more efficient than the classical Fourier descriptor. 
Moreover, this signature is more compact and is 
characterized by a lower variability. Motivated by very 
promising results obtained from this study, we would like 
to investigate the proposed recognition approach on other 
marine mammal click-type and chirp-type calls. We are 
currently working on the issue of independence of the 
recognition algorithm from acquisition system set-up.
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