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ABSTRACT

This paper describes a technique for the automated detection of leopard seal (Hydrurga leptonyx) 
vocalizations. Automatic detection of leopard seal calls within the Antarctic underwater soundscape is 
difficult because (a) the calls are frequently of low amplitude (b) the call duration is highly variable and 
(c) the frequency band overlaps with those of many other marine mammal vocalizations. However, 
humans easily distinguish leopard seal vocalizations from those of other marine mammals because of the 
calls’ distinctive sound, which is a result of the pulsed structure of the leopard seal vocalizations. To 
exploit the unique temporal evolution of the pulse repetition rate (PRR) in high (HDT) and low (LDT) 
double trills, the Envelope-Spectrogram Technique (tEST) was developed. The extracted PRR feature 
allows detection of the target vocalizations even against a background of other marine mammal 
vocalizations. To handle the high variability of the calls’ duration, the tEST algorithm was combined with 
a Hidden Markov Model (HMM) which is particularly well adapted to handle temporal variability. The 
developed HMM based detection algorithm worked rather reliably. The detection rate over a 4 day test 
period was high (72 %) although the signal to noise ratio (SNR) was low (< 10 dB). The number of false 
positive detections (12 %) was tolerable. Most of the false positives occurred during the period when 
R/V Polarstern was approaching the recording station and the SNR was temporarily < 0 dB. The detector 
worked 3 times faster than real-time and is therefore suitable for both off line biological research and time 
critical in-the-field applications, such as the detection of the presence of leopard seals in the context of 
human diver operations.

SOMMAIRE

Cet article décrit une technique de détection automatique des vocalisations du Léopard de Mer (Hydrurga 
leptonyx). La détection des sons émis par le Léopard de Mer à travers le bruit de fond sous marin est 
difficile parce que (a) les émissions sont fréquemment de basse amplitude (b) la durée des émissions est 
hautement variable et (c) les vocalisations sont dans la même bande que celle utilisée par de nombreux 
autres mammifères marins. Cependant, l'homme est facilement en mesure d'identifier les vocalisations 
émises par le Léopard de Mer de celles des autres mammifères, grâce à la pulsation particulière de ces 
émissions. Pour exploiter cette caractéristique unique de l’évolution temporelle du taux de répétition des 
pulsations (PRR) des doubles trilles hauts (HDT) et graves (LDT), la technique du spectrogramme de 
l’enveloppe (tEST) a été développée. Les caractéristiques PRR du signal permettent la détection des 
vocalisations recherchées même en présence de celles d'autres mammifères marins. Pour résoudre les 
problèmes dus à la haute variabilité des durées d'émission, l’algorithme tEST a été combiné avec le 
modèle des chaines de Markov (HMM), particulièrement bien adapté pour appréhender les variations 
temporelles. Cet algorithme de détection basé sur les HMM s’est révélé relativement performant. Le 
taux de détection sur une période d'essai de quatre jours a été élevé (72 %) malgré un faible rapport signal 
sur bruit (SNR) (< 10 dB). Le nombre de détections positives erronées (12 %) était tolérable. La plupart 
des détections erronées se sont produites lorsque le navire de recherche R/V Polarstern s'est approché de 
la station d'enregistrement, diminuant ainsi le SNR (< 0 dB). Le détecteur travaillant trois fois plus vite 
que le temps réel, il est de fait utilisable aussi bien pour les analyses de données post récolte, que pour une 
utilisation directe sur le terrain, comme par exemple la détection de la présence de Léopards de Mer lors 
d'opérations de plongée sous-marine.
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1. INTRODUCTION

The leopard seal (Hydrurga leptonyx) represents one of 
three Antarctic pack ice seal species. Leopard seals are 
solitary living animals, feeding on krill, squid, fish, 
penguins and other seal species (Reeves et al., 2002). As a 
top predator of circumpolar distribution, the leopard seal 
plays an important role in the Antarctic ecosystem. The 
population size is estimated at around 200000 animals 
(Reeves et al., 2002). Research on this species is restricted 
due to the Antarctic pack ice region being accessible for 
humans usually only during the short austral summer 
period.

Figure 1: Leopard seal (Hydrurga leptonyx) on floating sea ice.

Underwater, leopard seals are known to be rather vocal - at 
least during polar summer when most of the research was 
conducted. Stirling and Siniff (1979) described high 
vocalization rates of male leopard seals during the breeding 
season (November to January). Females show above
average vocalization rates during sexual receptivity (Rogers 
et al., 1996). Hence, passive acoustic monitoring offers the 
unique possibility to investigate the species without a need 
of direct access. PALAOA - the Perennial Acoustic 
Observatory in the Antarctic Ocean, (Boebel et al., 2006) is 
an autonomous recording station operated by the Alfred 
Wegener Institute (AWI), Germany, on the Ekstrom Ice 
Shelf close to the German Neumayer Base, providing 
underwater recordings from the Atlantic sector of the 
Southern Ocean. Since January 2006, PALAOA records the 
Antarctic underwater soundscape quasi-continuously. The 
station’s audio system allows broadband data acquisition 
with sampling rates of up to 192 kHz and 24 bit resolution. 
So far more than 6400 hours of acoustic data (as at 
September 2007) were accumulated. The recorded sounds 
are transmitted in real-time to the AWI in Germany, 
allowing real-time access and analysis of the acoustic data.

Extracting the signals of interest - in this case the leopard 
seal vocalizations - from the resulting 2.5 TBytes of data, is 
challenging. Obviously, human “observers” will not be able 
to manage this task, but rather, numerical detection 
algorithms need to be developed to perform an automated, 
computer based search. The resulting time series of calls 
will then form the data base for ecological studies with 
focus on diel patterns, diurnal and seasonal variability and 
their interrelation with the changing physical environment.

Apart from these scientific applications, the development of 
detection algorithms for leopard seal vocalizations can also 
help to increase the safeness of research divers in the 
Southern Ocean. Several encounters between human divers 
and leopard seals have been reported throughout the last 
decades (Muir et al., 2006). The most serious incident 
occurred in July 2003 at the British Rothera Station, located 
at the Antarctic Peninsula, when a scientist was killed by a 
leopard seal. As a consequence of this accident, acoustic 
monitoring prior to and during diving activities are used by 
AWI as risk mitigation method for diving activities. To this 
end, robust and fast (at least real-time) detection algorithms 
are needed to screen the hydro-acoustic recordings.

2. THE ACOUSTIC ENVIRONMENT

The Southern Ocean is among the regions least disturbed by 
anthropogenic noise. However, PALAOA records reveal a 
high degree of abiotic and biotic acoustic activity in the 
Southern Ocean. During austral summer in particular, the 
Antarctic underwater soundscape is dominated by the 
vocalizations of Weddell seals (Leptonychotes weddellii), 
Ross seals (Ommatophoca rossii), crabeater seals (Lobodon 
carcinophaga), leopard seals (Hydrurga leptonyx) and 
various baleen (Mysticeti) and toothed (Odontoceti) whale 
species.

10 kHzj

Figure 2: Spectrogram of a PALAOA sound file.

Figure 2 shows a spectrogram of a typical sound file as 
recorded at the PALAOA Station in austral summer. 
Overlapping vocalizations from different animals/species 
significantly complicate the detection of specific
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vocalization “targets.” However, human listeners can easily 
distinguish leopard seal vocalizations from those of other 
marine mammals because of their distinctive sound. It is 
believed that this distinctive sound is a result of the pulsed 
structure of the leopard seal vocalizations. To develop a 
detection algorithm for leopard seal calls, this publication 
exploits in detail the temporal structure of the pulse 
repetition rate (PRR) throughout the calls. The PRR feature 
is exclusively linked to leopard seal vocalizations (at least in 
the vicinity of the PALAOA Station) and seems to be a 
robust feature for the detection while other marine mammal 
vocalizations are present.

3. LEOPARD SEAL VOCALIZATIONS

3.1 State of knowledge

A first (partial) spectrogram of a leopard seal vocalization 
was published by Ray (1970) while Stirling and Siniff 
(1979) described four different leopard seal call types 
quantitatively. A comprehensive description of the vocal 
repertoire of leopard seals was published by Rogers et al. 
(1995). Rogers identified twelve different call types by 
analyzing recordings of captive and free living animals 
(Prydz Bay, Antarctica). The frequency span of the analyzed 
call types ranges between 65 Hz and 4800 Hz. Thomas et al. 
(1983) recorded ultrasonic vocalizations with frequencies up 
to 164 kHz of leopard seals in captivity during hunting 
activity. However, ultrasonic vocalizations have so far not 
been reported from field studies.

By far the most frequent vocalizations of leopard seals are 
the so called high double trill (HDT -  see Figure 3) and the 
low double trill (LDT). In the PAL AO A recordings, the 
HDT (frequency range: 2.5 - 4.5 kHz) and the LDT call type 
(frequency range: 230 - 470 Hz) represent more than 70 % 
of all leopard seal vocalizations while Rogers et al. (1995) 
reported 79 % of such calls for their data set.

Due to its distinct Signal to Noise ratio (SNR) this paper 
focuses on the analysis and detection of HDTs.

3.2 The high double trill (HDT)

Figure 3 (top) depicts the waveform and spectrogram of a 
high double trill. The waveform clearly shows that the call 
is separated into two segments which consist of a series of 
short pulses. These pulses cause an amplitude modulation of 
the main signal. This modulation generates so called 
sidebands, which are revealed in the spectrogram in 
Figure 3 (bottom). The frequency difference between the 
sidebands equals the frequency of the PRR. This implies 
that an increasing (decreasing) PRR is causing increasing 
(decreasing) frequency differences between the sidebands. 
In general the number of sidebands is determined by the 
type of amplitude modulation. For sinusoidal modulation, 
only two sidebands are generated while the primary

frequency is rendered invisible in the spectrogram. By 
contrast, triangular or rectangular modulations cause 
multiple (> 2) sidebands. The type of amplitude modulation 
of the HDT is in-between a sinusoidal and triangular 
modulation (see Figure 5).
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Figure 3: Waveform and spectrogram o f a HDT call.

A total of 150 HDTs were analyzed to gain information 
about the temporal structure and the frequency 
characteristics of this call type (Table 1). The HDTs feature 
a high variability of the call duration, ranging from 1.9 s - 
9.0 s. The calls cover a frequency range between 2500 Hz 
and 4450 Hz.

Table 1: Acoustic features o f the HDTs recorded at PALAOA.

Min Max Mean Stdv
Call duration 1.9 s 9.0 s 4.5 s 1.6 s
Frequency 2500 Hz 4450 Hz --- ---

4. THE ENVELOPE-SPECTROGRAM 
TECHNIQUE (tEST)

So far, HDT and LDT descriptions regarded the PRR as 
constant for the duration of the call (Rogers, 2007; Rogers 
et al., 1995). By contrast, spectrograms of calls recorded by 
PALAOA reveal varying side-band distances over the 
duration of HDT and LDT calls, suggesting a variation of 
the PRR in the course of the call.
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To accurately analyse the temporal structure of the PRR, a 
Matlab based algorithm was developed. The respective 
sound snippet was first band pass filtered with the frequency 
range of the target signal (HDT: 2.5 - 3.5 kHz). The 
envelope of the absolute values of a band passed waveform 
was calculated by detecting all maxima values (peaks) in the 
waveform and interpolating (1-D) the detected points. The 
resulting waveform was then down-sampled to a sampling 
rate of 1000 Hz and transformed into the frequency domain 
by means of a Fast Fourier Transformation (FFT- 
Parameters: Hamming window 256 points; 50 % overlap).

This algorithm, named tEST (the Envelope-Spectrogram 
Technique) hereinafter, provides the spectrogram of the 
envelope, i.e. the frequency-evolution of the PRR. If the 
SNR over the frequency range of the target signal is low 
(< 6 dB), it can be helpful to use a narrower filter which 
covers only the frequency range of the signal of the highest 
energy.

4.1 Applying tEST on HDT calls

Figure 4 shows the result of tEST applied on a HDT. The 
signal was processed as described in the former paragraph.
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Figure 4: Results o f tEST applied on a HDT.

The result of the FFT of the envelope signal is displayed in 
the lower part of Figure 4. For the selected sample, the pulse 
repetition rate of the envelope varies between 52 Hz and 
72 Hz (20 Hz bandwidth @ 2 Hz resolution). The first part 
of the call is characterized by descending rates. In the 
second part the pulse repetition rate is ascending.

The same 150 HDTs as used for the spectral description 
were analysed with tEST. All vocalizations showed 
descending repetition rates in the first part of the call and 
ascending rates in the second part. The observed frequencies 
ranged between 45 Hz and 75 Hz.

5. DETECTION OF LEOPARD SEAL 
VOCALIZATIONS

5.1 Introduction

In summary, the previous sections showed:

(a) The analysis of the acoustic environment (Section 2) 
confirmed that vocalization of various whale and seal 
species occur simultaneously within the frequency bands of 
the target vocalizations. Thus the likelihood of false positive 
detections will be high using detection methods such as 
energy summation or comparing energies in different 
frequency bands.

(b) The call durations of the HDT calls vary widely 
(Section 3) which renders detection algorithms based on 
matched filter/spectrogram correlation difficult. Further 
more the detection performance of these methods is linked 
to the representativeness of available examples of the target 
vocalization. 150 calls are probably not enough samples to 
create an effective filter.

(c) Leopard seal calls exhibit temporal modulation of the 
PRR throughout HDTs providing a unique feature of this 
leopard seal call type (Section 4). Other marine mammal 
vocalizations in frequency bands overlapping with those of 
the target vocalizations are likely not to pass as “false 
positives” if the detection algorithm is to exploit this rather 
unique feature.

For the detection of the HDTs based on the PRR feature a 
Hidden Markov Model (HMM) was applied. The next 
paragraphs will give a short introduction to HMMs and how 
they are used for the detection.

5.2 Hidden Markov Models (HMM)

Hidden Markov Models (HMM) are statistical models for 
the detection and classification of transient patterns, 
representing state of the art tools in human speech
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recognition (Rabiner, 1993). HMMs are particularly well 
adapted to this call type of variable duration, as they allow 
detection of temporally changing structures. For leopard 
seal vocalizations this implies that the detection probability 
is high irrespectively of the calls duration, as long as the 
envelope follows the specific temporal evolution (see 
Figure 6). A short introduction and description on how to 
build a Hidden Markov Model are given in the following 
paragraphs. Unfortunately, the scope of this paper only 
allows an abbreviated, qualitative description of Hidden 
Markov Models. For detailed information see Rabiner, 1993 
and Deller et al. 2000. All model parameters used in this 
study are available on request.

(a) Feature extraction: To extract the call type’s typical 
features, it is recommended to choose the best available 
samples. Consequently the best 100 samples (high SNR) 
were selected out of the available 150 samples for this 
process. The features are extracted by means of a time
frame based analysis (frame length: 256 ms) of the envelope 
signal of the 100 sample files of variable duration (2 - 9 s, 
depending on call duration). For each time frame, a feature 
vector is calculated (see Figure 5), representing the 
respective energy distribution as a function of frequency.

:OHz

>5Hz

iOHz

All feature vectors (n = duration of sample file / 256 ms) of 
one sample file comprise the so called observation vector 
(which actually is a matrix - see Figure 7). Hence, 100 sets 
of spectral vectors from the spectrograms of the envelopes 
are extracted.

(b) Information reduction: To condense the numerous 
ensuing feature vectors to a set of ‘most significant feature 
vectors, a “k-mean (squared Euclidean distance)” cluster 
algorithm (Deller et al., 2000) was applied to the training 
set. This creates the so called codebook of 10 (number 
empirically chosen) codebook vectors representing the 
target vocalization’s most significant (sub-)set of 10 feature 
vectors. For each feature vector of an observation vector the 
best matching (minimal distant) codebook vector is 
determined, which results in an observation sequence. Each 
of these consists of a series of integers, representing the

(solid line)
O s  |2.5 s |5.0 s

Figure 5: Feature vector (enclosed by solid box) and 
observation vector (enclosed by dashed box) o f a HDT.

sequence of IDs of the best fitting codebook vectors. Thus, 
each set of the 100 spectral vectors is quantized to a one 
dimensional array of integers. The resulting set of 100 
quantized vectors represents the quantized training set.

(c) Generate the HMM: Evaluating model parameters 
describing the quantized training set best. A Hidden Markov 
Model is a quintuple, comprising (a) the number of (hidden) 
states S; (b) the state transition matrix A (transition 
probabilities between the states); (c) the observation 
probability matrix B; (d) the state probability vector at time 
t=1, ^(1); and (e) the number of observable outputs Y 
(number of codebook vectors), or in short:

HMM={S, rc(1), A, B, Y}.

The number of states (S) was assigned to 5. The number of 
10 observable outputs (Y) is given by the size of the 
codebook. The state transition matrix (A), the observation 
probability matrix (B) and the state probability vector at 
time=1 (ïï(1)) were determined by applying the 
forward/backward algorithm (Deller et al., 2000) on the 
quantized data set.

In the first step, the model parameters A, B and ^(1) are 
initialized (see below) and the algorithm calculates the 
match between the model and the training set. In the second 
step the algorithm starts to modify the model parameters. 
The algorithm guarantees that every iteration has a matching 
likelihood that is >= to the previous one. Once the matching 
likelihood converges, training is done.

Critical to this process is the initial guess of the model 
parameters. In the case of the described target signals, 
meaningful parameters were unknown. If the initial guess is 
too far away from the optimal parameters, then the 
algorithm will only find a local maximum but not the global 
one. For this reason the initial parameters were randomized 
and the resulting HMMs used to analyse one sample file 
including a known number of target signals repeatedly. The 
best fitting model parameters (giving the highest detection 
probability for the target signals) were then chosen for the 
further process.

5.3 Detection of HDTs using the HMM

To detect HDTs with the optimized HMM (5 states), a 6-s 
window is continuously slid in steps of 1.0 s (~ 83 % 
overlap) over the data stream: the respective window 
content is first band pass filtered (2500 Hz - 3500 Hz). The 
resulting waveform is then used to calculate the envelope, 
which is used to derive the observation sequence as 
described in section 5.2. In a final step the probability of the 
observation sequence of each window under the assumption 
of the model P(wmdow|modei) is calculated. In Figure 6 an
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example for the output of the HMM detection algorithm is 
given. The spectrogram shows four signals - two HDTs (c) 
of different duration, an artificial signal (b) and a Weddell 
seal call (a). The detector output is shown in the lower part 
of Figure 6. The detection threshold is set automatically by 
the algorithm depending on the overall SNR. If the detector 
output reaches the detection threshold, a call is “detected”. 
In this sample the HDT calls are clearly detected by the 
system but not the Weddell seal call or the artificial signal 
present in the same frequency band.

A subset of data was selected (2 min of data every 10 min) 
to create a reference data set, which was used to evaluate the 
detection algorithm. The result of the test run is presented in 
Figure 7. The light line represents the manually detected 
calls; the dark line represents the automatically detected 
calls. The total number of manually detected calls in the 
selected files was 1527 and the detection rate of the system 
72 %. The overall temporal evolution of the two curves 
shows a high degree of similarity. Analysing all files over 
the period the HMM based algorithm detected 7548 HDTs.

spectrogram 7.5 sec 3.0 sec

^ (c )*fee*

(a) Weddell seal ca]

(b) Artificial signal

" r /w\ o u r \T

Figure 6: Detector output for a Weddell seal call, an artificial 
signal and two HDT calls of different duration.

5.4 Results of the detection system running over a 
test data set

To test the detection algorithm, independent data (i.e. not 
including the 100 calls used to develop the HMM) from a 
4 day period of variable SNR was selected and analysed. 
The period started out with a good bandwidth related SNR 
of 10 dB (between 2.5 kHz and 3.5 kHz), which deteriorated 
to SNR < 0 dB during the last day of the period when 
R/V Polarstern approached the recording station. To deal 
with the low SNR the spectrogram of the envelope was 
manipulated using a wavelet based denoising technique 
(Kovesi, 2000 and Kovesi, 1999). Also an anisotropic 
diffusion was performed on the spectrogram to enhance the 
contrast at sharp intensity gradients (Kovesi, 2000). The use 
of the denoising and the anisotropic diffusion algorithm 
increased significantly the detection performance. Thus, the 
algorithms were directly integrated into the system.
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Figure 7: Results of a test run over a four day period.

Most of the false positives (in total 12 %) occurred during 
the period when R/V Polarstern was approaching - 
especially when the vessel was close to the recording station 
(second half of day 24.12.2003). A detailed error analysis 
will be included in upcoming studies, to determine the exact 
cause of these false detections.

The detection algorithm is rather fast. Analysing a sound 
file of 2 minutes duration (48 kHz - 16 bit) takes about 
40 seconds (Desktop PC with single Intel Pentium IV 
3.4 kHz processor and 2GB RAM). Thus the HMM based 
detection system is suitable for real-time applications.

6. DISCUSSION AND OUTLOOK

The tEST algorithm which was developed in the course of 
this study is a useful tool for analysing the temporal 
evolution of pulse repetition rates in animal calls. The 
analysis of the high double trill (HDT) of the leopard seal 
revealed for the first time a temporal variation in the 
repetition rate of the pulses.

First results of the analysis on low double trills (LDT) of the 
leopard seal showed also a temporal variation in the pulse 
repetition rate throughout this call type. The frequency 
range of the PRR is compared to the HDT around 4 times
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lower (bandwidth between 13 Hz and 20 Hz). Future work 
will concentrate on the detection of LDTs using the PRR 
feature in combination with a Hidden Markov Model.

However, the specific PRR modulation is exclusively linked 
to leopard seal vocalizations (at least in the vicinity of 
PALAOA Station), facilitating the development of a HMM 
based detection system to detect the target vocalizations in a 
data set which was entirely overlaid by vocalizations of 
other marine mammals.

A problem of detection algorithms is often their validation - 
especially when working with huge data sets. HMM based 
detection systems provide the “matching probability” 
between the signal and the used model for each call 
detected. Analysing this probability over time can help to 
identify regions where the “matching probability” is low 
and a validation is necessary in particular.

In summary, it is noted that the Hidden Markov Model 
worked rather reliably. The detection rate over the 4 day test 
period was high (72 %) although the SNR was unfavourable 
(< 10 dB). The number of false positive detections (12 %) 
was tolerable, because most of the false positives occurred 
during the period when R/V Polarstern was approaching the 
recording station when the SNR was temporarily < 0 dB. 
The detector worked 3 times faster than real-time and is 
therefore suitable for time critical applications.

ACKNOWLEDGEMENTS

Many thanks to Cornelia Kreift for pooling the data 
manually and creating the necessary reference data set for 
deriving the efficiency of the detection system. The authors 
especially want to thank Marie A. Roch for her helpful 
remarks and suggestions. Internal and external reviewers 
provided useful comments on previous drafts of this 
manuscript. Delphine Dissard, Catherine Audebert and an 
anonymous reviewer provided the French translation of the 
abstract. Setting up the PALAOA observatory would not 
have been possible without the extensive support of the 
AWI logistic department.

REFERENCES

Boebel, O., Kindermann, L., Klinck, H., Bornemann, H., 
Plotz, J., Steinhage, D., Riedel, S. and Burkhardt, E. 
(2006): Acoustic Observatory Provides Real-Time 
Underwater Sounds from the Antarctic Ocean. In: EOS, 
87, pp. 361 and 366.

Deller, J. R., Hansen, F. H. L. and Proakis, J. G. (2000): 
Discrete-Time Processing of Speech signals. In: Wiley- 
IEEE Press, Chapter 12, pp. 677-744.

Kovesi, M. (2000): MATLAB and Octave Functions for 
Computer Vision and Image Processing. School of 
Computer Science & Software Engineering, University 
of Western Australia. Available from: 
<http://www.csse.uwa.edu.au/~pk/research/matlabfns/>.

Kovesi, M. (1999): Phase Preserving Denoising of Images. 
In: The Australian Pattern Recognition Society 
Conference (DICTA ’99), December 1999, Perth, 
pp. 212-217.

Muir, S. F., Barnes, D, K.A. and Reid, K. (2006): 
Interactions between humans and leopard seals. In: 
Antarctic Science, 18(1), pp. 61-74.

Rabiner, L. and Juang, B. H. (1993): Fundamentals of 
Speech Recognition, Prentice Hall PTR, New York, 
496 pp.

Ray, G. C. (1970): Population ecology of Antarctic seals, 
Volume 1. In: Antarctic Ecology (Ed. Holdgate, M. W.), 
Academic Press, New York, pp. 398-414.

Reeves, R. R., Stewart, B. S., Clapham, P. J. and Powell, J. 
A. (2002): National Audubon Society: Guide to Marine 
Mammals of the World. Alfred A. Knopf, New York, 
531 pp.

Rogers, T. L. (2007): Age-related differences in the acoustic 
characteristics of male leopard seals, Hydrurga leptonyx. 
In: Journal of the Acoustic Society of America, 122(1), 
pp. 596-605.

Rogers, T. L., Cato, D. H. and Bryden, M. M. (1996): 
Behavioural significance of underwater vocalizations of 
captive leopard seals, Hydrurga leptonyx. In: Marine 
Mammal Science, 12(3), pp. 414-427.

Rogers, T. L., Cato, D. H. and Bryden, M. M. (1995): 
Underwater vocal repertoire of leopard seals (Hydrurga 
leptonyx) in Prydz Bay, Antarctica. In: Sensory Systems 
of Aquatic Mammals (Ed. Kastelein, R. A., Thomas, J. 
A. and Nachtigall, K.), De Spil Publishers, Woerden, 
pp. 223-236.

Stirling, I. and Siniff, D. B. (1979): Underwater 
vocalizations of leopard seals (Hydrurga leptonyx) and 
crabeater seals (Lobodon carcinophagus) near South 
Shetland Islands, Antarctica. In: Canadian Journal of 
Zoology, 57, pp. 1244-1248.

Thomas, J. A., Fisher, S. R. and Evans, W. E. (1983): 
Ultrasonic vocalizations of leopard seals (Hydrurga 
leptonyx). In: Antarctic Journal of the US, 17, page 186.

Canadian Acoustics / Acoustique canadienne Vol. 36 No. 1 (2008) - 124

http://www.csse.uwa.edu.au/~pk/research/matlabfns/

