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a b s t r a c t

The application of particle filters to two tracking problems in passive acoustic monitoring are discussed. 
Specifically we describe algorithms for extracting the contours of delphinid whistles and the localization of 
vocalizing animals in three dimensions using a distributed sensor array. The work is focused on 
highlighting the potential of particle filters in the analysis of bioacoustic signals. The discussion is based 
on one particular form of particle filter: the sequential importance resampling filter.

s o m m a i r e

Cette étude porte sur l'application des filtres particulaires à deux problèmes d'extraction d'information en 
acoustique passive. La description concerne plus spécifiquement deux algorythmes ayant pour objectif 
l'extraction de contour des sifflements de dauphins et la localisation en trois dimensions d'animaux 
vocalisant à partir d 'un jeu de capteurs répartis localement. L'objectif de ce travail est de mettre en lumière 
le potentiel des filtres particulaires pour l'analyse de signaux bioacoustiques. Parmi les filtres particulaires, 
l'accent est mis dans cette étude sur forme particulière de filtre: le filtre à rééchantillonnage d'importance 
séquentiel.

1. i n t r o d u c t i o n

Real-time Passive Acoustic Monitoring (PAM) 
systems for cetaceans require the integration of many 
elements. Several of these elements can be cast as tracking 
problems. In particular this paper considers two such 
aspects: extracting whistle contours and the estimation of 
source location using a sensor array. The objective of this 
work is to highlight the potential of particle filters within the 
application area as a real-time tracking solution, so the 
paper is framed in a somewhat pedagogical manner. We 
avoid details of the theoretical principles under-pinning 
particle filters, rather we aim to convey the fundamental 
steps common to particle filters.

The definition of a tracking problem is simply a parameter 
estimation problem in which the parameter estimates are 
continually updated; such tasks are also formerly referred to 
as sequential estimation problems. They have been widely 
studied in a large range of application areas, including 
sonar, radar and biomedicine. The classical tool for 
performing sequential estimation is the Kalman filter and its

variants. These methods have been widely, and often 
successfully, exploited. However their applicability is 
limited by the underlying assumptions they require.

2. b a c k g r o u n d

The general framework for sequential estimation 
problems can be expressed as follows. The true value of the 
parameter vector to be tracked, at time step n, is denoted 0n. 
The evolution of this parameter vector is described through 
a system function, F, such that

»n = F  (0n_!, w n ) (1)

where wn is a vector of random variables specifying the 
random component of the parameter evolution, it is referred 
to as either the process or the system noise. Similarly the 
function G defines the measurement process, where xn 
contains the measured data

xn = G (6n , vn ) (2)

Canadian Acoustics / Acoustique canadienne Vol. 36 No. 1 (2008) - 146



in which vn represents the measurement noise process. In 
the general case the functions F  and G are non-linear, the 
noise processes w n and vn are not necessarily additive and 
are not distributed according to a Gaussian distribution. Our 
goal is to estimate the parameter vector 9„ on the basis of 
the set of measurements xk, k=0,1,...,n. In order to avoid 
increasing memory requirements and computational load as 
n increases, it is natural to seek a recursive solution. That is 
to say we seek a solution in which the parameter estimate at 
time n is derived only from knowledge of the parameter 
estimate at the preceding time step, n-1, and the current 
measurement x„. It should be noted that when k=0, x0 is the 
only information available. This is typically provided by a 
suitable detection algorithm.

2.1 The Kalman Filter

The Kalman filter is a recursive algorithm which is 
optimal under simplifying assumptions on the system and 
measurement models (Arulampalam et al., 2002). 
Specifically (1) and (2) are simplified so that the system and 
measurement models are linear and the noise processes are 
additive and Gaussian. Leading to a model of the form

in which An and Bn are the system and measurement 
matrices, note that whilst in (3) temporal dependence of 
these matrices has been assumed, in many applications they 
are constant. The update equations for the classic Kalman 
filter are (Bozic, 1979;Zarchan & Musoff, 2005)

T n =  A  n  P n -1 A  n'  +  Q n

K n =  T n  B n '  ( B n  T n  B n '  +  R n  ) '

(4)
P n  =  T n  -  K n B n  T„
0  n =  A n 0  n - 1  +  K  n -  B n  A n O  ̂  )

in which T n is a temporary matrix (but can be regarded as an 
a priori estimate of P n) used to ease the computational load, 
Q n and Rn are the covariance matrices for the process and 
measurement noises respectively, Kn is the Kalman gain 

matrix, Pn is the error covariance matrix and 0n is the 

vector of parameter estimates at time n .

The Kalman filter is a highly flexible and computationally 
efficient scheme. But its application is limited to cases 
where (3) can be regarded as suitable approximation of (1) 
and (2). Variants on the Kalman filter have been proposed 
which extend its range of applicability, common examples 
of these are the extended Kalman filter (EKF) (Zarchan &

Musoff, 2005) and unscented Kalman filter (UKF) (Wan & 
van der Merwe, 2000).

2.2 The Particle Filter

Particle filters provide a general solution to 
tracking problems of the form described by (1) and (2), 
without the need to invoke the inherent assumptions 
associated with the Kalman filter. There are a wide variety 
of versions of particle filters that have been be defined 
(Arulampalam et al., 2002;Ristic et al., 2004;Doucet et al., 
2001). However the objective of this work is to 
communicate the opportunities afforded by the use of 
particle filters in PAM systems, rather than a review of 
particle filters per se. So we shall concentrate on a simple 
form of particle filter, specifically we shall discuss 
Sequential Importance Resampling (SIR) filters. These do 
not represent the state-of-the-art particle filtering 
algorithms, but the do provide a good basis for the 
introduction of the concepts of particle filtering and offer 
good performance in the examples presented herein.

Consistent with the review character of this publication we 
provide a mechanistic description of the SIR filter and 
choose to omit the under-pinning principles, these principles 
are widely available elsewhere, e.g. (Arulampalam et al., 
2002;Ristic et al., 2004;Doucet et al., 2001). The objective 
here is to provide some insight into how to construct a 
particle filter and to highlight the flexibility and power that 
they provide.

Particle filters are also referred to as sequential Monte Carlo 
algorithms (Doucet et al., 2001) and, as is characteristic of 
Monte Carlo schemes, they exploit samples drawn from the 
underlying distributions. Given a set of M  parameter 
estimates at time n-1 which are denoted

0  n _ 1 =10 n_ 1 k  |  , the basic steps involved in the SIR
v ’ zk=1,...,M

particle filter are:

i. Update each of the estimates using 

0n ,k = F  (Ôn_u , wnk ) where w„,k is a sample from the 

process noise distribution.

ii. Use the measured data to score each of the new 

estimates 0nk using the likelihood computed via (2) 

and normalize these scores so that they sum to unity.

iii. Create 0 n by drawing M  samples, with replacement, 

from 0 n according to the scores allocated in step ii.

iv. From the samples 0 n form an estimate of the
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parameter vector. as well as potentially low Signal to Noise Ratios (SNRs).

In the first step the existing estimates are perturbed, in a 
manner which mimics the effect of process noise, so 
producing a set of candidate parameter estimates. The 
particle filter then considers these estimates and scores them 
according to how well they predict the sample that has just 
been measured, xn. This may be explained in the specific 
case of an additive noise measurement noise model, i.e. in 
the case where (2) can be expressed in the form:

= G  (On ) + Vn (5)

In such cases the scoring is realized by evaluating the 

likelihood p v (xn -  G (fiink )) inw hich pv is the probability

density function of the measurement noise process v. 
Consequently parameter estimates close to the true value

should yield values of G (0nk j which are close to the

measured data, so the have relatively large likelihood. 
Whereas estimates significantly different form the true 
value, will (probably) yield measurement estimates very 
different from the measured value, so yield a low likelihood. 
The scores are derived from the likelihood by scaling them 
so that they sum to unity.

Step iii, is realized by selecting the estimates using random 
sampling according to the estimate’s scores. Uniform 
random variables are used and the probability of selecting a 
particular estimate is given by its score. The sampling is 
implemented with replacement, so that estimates with high 
scores are typically replicated many times. The new 
samples constitute the set of parameter estimates for starting 
the next iteration.

The final step is to construct the final parameter estimate. 
This can be done using one of several principles including: 
MAP (maximum a priori probability) and minimum mean 
squared error (MMSE).

3. WHISTLE CONTOUR EXTRACTION

One way in which species classification for 
delphinids can be achieved is through analysis of their 
whistles (Oswald et al., 2007). Specifically the contours of 
the whistles in the time-frequency domain are used as the 
key features and these contours need to be estimated 
(extracted) in order to successfully realize such a system. 
The extraction of such whistles is normally achieved 
through use of the spectrogram (Oswald et al., 2007;Datta & 
Sturtivant, 2002;Leprettre & Martin, 2002) although 
alternative approaches can prove successful (Johansson & 
White, 2004). The extraction process can be hindered by 
the presence of overlapping whistles and echolocation clicks

In this work we demonstrate how particle filters can be used 
as one way to automate this contour extraction process. 
Other workers have considered applying particle filters to 
similar problems based on the spectrogram (Dubois et al., 
2005;Nagappa & Hopgood, 2006). The work described 
here takes advantage of the Short Time Fractional Fourier 
Transform (STFrFT). The STFrFT for the analysis of 
whistle has been considered elsewhere (Capus & Brown, 
2003). It is worth noting that the method we adopt we refer 
to as a STFrFT, largely in deference to previous work in this 
application, but it should be noted that the method could be 
regarded under a number of other signal processing 
paradigms, most obviously it also exploits the principles 
behind adaptive basis decomposition methods (Mallat & 
Zhang. 1993).

Our tracking scheme is based on detecting the maxima of 
the STFrFT. Consider the kth windowed data segment of the 
incoming data stream, x(n), denoted xk and defined as

= [ x (kP ), x (kP +1),..., x (kP + L - 1)] (6)

where P is the number of samples by which the window is 
shifted between successive analysis windows and L is the 
window length. The elements of xk are denoted xk(m), 
m=0,.. ,,L-1. The STFrFT is defined as

S (k , a , f  ) = Z xk (m )■
- 2 n i ( / + a t m  / 2 )tm (7)

where f  denotes centre frequency [Hz], a  is the frequency 
sweep rate [Hz/s] and the local time index, tm, is defined

through tm = ^m -  L  j  / f  , in w h ich f denotes the sampling

frequency. The STFrFT can be loosely regarded as 
representing the energy in a signal at a particular time and at 
a frequency associated with a particular sweep rate.

Evidently the classical short time Fourier transform (the 
spectrogram) is a special case of (7) in which a=0. The 
flexibility offered by the STFrFT allows the processing 
scheme to more accurately model the underlying process. 
By accommodating linear sweeps the STFrFT can increase 
the SNR of received signal, assuming that a sweep rate, a , is 
chosen that is close to that in the received data. The rapid 
sweep rates that can be observed in odontocete whistles 
make the use of the STFrFT an attractive option. The use of 
the STFrFT intrinsically provides estimates of the sweep 
rate for each analysis window; this additional information 
can be used to improve tracking performance.

x

x
k

2

m=0
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3.1 Particle Filter for Whistle Contour Extraction
estimated frequency contour.

The use of particle filters to extract whistle 
contours requires one to define the system and measurement 
functions, i.e. (1) and (2). The parameter vector we seek to 
estimate contains both the frequency and sweep rate and is 
defined as 0 = f , a ] \  The system model we employ is:

1 P  
f . 

0 1
-1  +  w  n =  A 0 n -1  +  w n (8)

wn is a zero mean Gaussian noise with a diagonal 
covariance matrix, so that system noise on the frequency 
and sweep rate are uncorrelated with difference variances. 
This is a standard linear model of the form of (3).

The algorithm has successfully tracked the whistle. There is 
an initial period, before 0.1 s, where the algorithm provides 
an estimate which deviates somewhat from the visual track 
of the whistle. The signal is weak here, but the primary 
cause for this behavior is the fact that the algorithms require 
some time to initialize, to “burn in”. The estimated track 
also deviates at around 0.6 s when the whistle’s amplitude 
temporarily reduces significantly. Accepting these minor 
deviations it is encouraging to note that the algorithm has 
successfully tracked the whistle even during the rapid 
frequency jump occurring shortly after 0.2 s and ending 
shortly before 0.4 s. This is despite the signal being partly 
obscured by a click train. This is particularly gratifying 
since such jumps are characteristic of T. truncatus and one 
would seek to avoid classifying such a jump as two separate 
whistles.

There are several candidate measurements one can use for 
this system. The one adopted herein, based on the STFrFT, 
is

X „  =
- 2m (e „  (1)+e„ (2 )tm / 2 )tm

(9)

Note the distinction between the data, xk(m), and the 
measurement associated with a parameter X n. The 
measurementX n is a scalar value.

The processing scheme adopted here applies a robust pre­
whitening step (Leung & White, 1998) to the incoming data 
stream, to create x(n); this ensures that the background noise 
has an approximately flat spectrum of a known level. This 
pre-whitening allows one to use the value X n as a proxy for 

the (unscaled) probability p  (0n | xk ) :  large values of X n

relate to highly probable events, whereas small values of X n 
relate to events of low probability. This argument is a 
simplification of the principles lucidly described in detail in 
(Brethorst, 1988). The non-linear character of (9) favors the 
use of a particle filter solution.

3.2 Results for Whistle Contour Extraction

This method is applied to a short (1.9 s) section of 
a whistle recorded from Tursiops truncatus. This recording 
contains features common to many similar recordings. 
There are trains of echolocation clicks, e.g. between 0.2 and 
0.4 s, there are other whistles of varying strength and the 
primary whistle varies rapidly in frequency and level 
throughout the recording. The results are shown in 
Figure 1. The upper frame of this figure shows the original 
spectrogram, whilst the lower frame depicts the same 
spectrogram overlaid with a white line showing the

Figure 1: Results of contour extraction for a Tursiops 
truncatus whistle based on a particle filter. Upper frame 
shows the spectrogram, the lower frame shows the same 

plot with a white line overlaid to show the contour estimate.

4. SOURCE LOCALISATION

The second problem this paper considers is that of 
tracking the location of a vocalizing animal in three 
dimensions using a hydrophone array. The most suitable 
signals for performing such localizations are echolocation 
clicks, but other vocalizations can be used. In this example 
we use echolocation clicks from a sperm whale, Physeter 
macrocephalus.

The localization problem can be described as follows. A set 
of acoustic sensors (in this case hydrophones) are located at

2

m=0
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known positions, rm, in an environment. The source, is at an 
unknown location s, and emits a sound (a vocalization) 
which propagates through a known medium. The phrase 
“known medium” is intended to highlight the assumption 
that the propagation time from one point in the medium to a 
second point can computed, implying knowledge of (at 
least) the sound speed profile. This model we shall denote 
M  . Using the received signals one is able to compute the 
delays, x(m,ri), observed between the vocalizations being 
detected on the pair of hydrophones m and n. Collecting all 
of these delays into a vector t  allows one to express the 
problem as: given the measured delays x, a model of the 
acoustic environment, M  , and the sensor locations, r, can 
one infer the source location?

The choice of the acoustic model M  is an important factor 
controlling the accuracy of the resulting estimated source 
locations. The use of a simple model should result in an 
efficient algorithm, but the estimates may be subject to 
considerable error. The use of models that accurately 
capture the propagation of sound in the ocean is clearly 
advisable, but their use is often limited by the absence of 
complete knowledge of the physical parameters required to 
specify such a model. The form of the model used does not 
directly impact the following discourse. This problem has 
been treated by a large number of authors as a non­
sequential estimation problem, e.g. (Spiesberger, 
2001;Thode, 2004;White et al., 2006). In the following we 
translate the problem into a tracking, sequential estimation, 
task and present a particle filter based solution.

4.1 Particle Filter for Source Localization

random walk model described by (10) is that it does not 
account for this irregular sampling. It is reasonable to 
increase the standard deviation of wp in proportion to the 
interval between irregular vocalizations, reflecting the fact 
that an animal is likely to have moved a greater distance in 
longer intervals than short ones.

The measurement model is simply:

t p = M  (0p , r) + v . (11)

The function M  is typically a highly non-linear function. 
It is this that again makes the particle filter an attractive 
processing option. The measurement noise vn is modeled 
using a long-tailed distribution, such as a Laplacian 
distribution. The advantage of this is that it models the 
occasional failure of the delay estimation operation. The 
presence of strong reflectors can lead to some isolated delay 
estimates with large errors. By employing a measurement 
noise model with a long-tailed distribution such outliers are 
penalized less than would be the case if a Gaussian model 
was used for the noise.

4.2 Results for Source Localization

The algorithm outline in the preceding subsection 
has been applied to data obtained from an echo-locating 
sperm whale using bottom mounted hydrophones. 
Specifically, the data used in this study was the second data 
set supplied for the 2005 Workshop on Detection and 
Localization of Marine Mammals using Passive Acoustics 
held in Monaco (Adam, 2006).

The underlying model when using a particle filter 
for localization is relatively straightforward. The unknown 
parameter vector, 0, contains the source co-ordinates, for 
example expressed in Cartesian co-ordinates. The system 
matrix aims to model how the animal moves through the 
medium. Various methods can be used to impose models 
that are appropriate for the known behavioral parameters. 
For example one can seek to impose maximum swim rates, 
or rates of ascent and descent. With the objective of 
retaining simplicity we stick with a simple random walk 
model:

(10)

where wp represents a vector of independent, zero mean, 
Gaussian white noise. The underlying assumptions in (i0) 
are very limited, it assumes that the current location is the 
just a random perturbation from the preceding location; 
Further note that the vocalizations typically occur at 
irregular intervals. The subscript p denotes data associated 
with the pth such vocalization. A shortcoming of the

Figure 2: Estimated source locations using particle filter. 
Open circles ‘O’ indicate the individual estimates. 
Crossed circles ‘©’ indicate the sensor locations
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Figure 3: Comparison of estimated source locations using 
particle filter and non-sequential estimation.

Open circles ‘O’ indicate the results of particle filtering. 
Crosses ‘+’ indicate estimates from non-sequential estimator

Figure 4: Estimated source location in three dimensions. 
Sensor location locations are indicated by the black stars ( ★ )

The results depicted here are based on the same delay 
estimates as those employed in (White et al., 2006). The 
results are obtained assuming a linear sound speed profile. 
Figure 2 depicts the result of applying the particle filter to 
this data set. Whilst Figure 3 shows the same results on an 
expanded scale, also shown in this plot are the results of the 
algorithm presented in (White et al., 2006) obtained on the 
same data set using a propagation model with a constant 
sound speed. Comparing the results from the particle filter 
with those from the estimation method, in (White et al., 
2006), demonstrates the potential of the particle filter as a 
real-time tracking solution of comparable performance 
given the same time delay estimates.

The results shown in Figures 2 and 3 are consistent with 
those obtained in (Adam, 2006) and from Figure 3 we see 
that the particle filter results and those from the non­
sequential scheme are very close to each other. In Figure 4 
these results are show in three dimensions.

5. DISCUSSION

Particle filters provide a general, powerful and 
flexible tool for solving tracking problems. The results 
herein demonstrate that the solutions achieved are of high 
quality, despite the rather crude nature of the particle filter 
algorithms used and the fact that we have, in general, 
avoided including all of the available prior information in 
the interests of retaining simplicity.

The good performance of particle filters is commonly 
realized at the cost of a large computational burden being 
incurred. A key parameter in controlling this cost is the 
number of particles M  employed. The larger the number of 
particles, the better the solution but the greater the 
computational burden imposed. A second key parameter 
that affects performance, but is not related to computational 
burden, is suitability of the choice of the distribution width. 
This should be chosen to be representative of the change 
expected to occur in the state vector between measurements. 
In the source localization application this would be relative 
to the typical swim speed of the species of animal to be 
tracked.

The initial estimate of the state vector is derived depending 
on the application. For the whistle contour extraction once 
the presence of a whistle is detected each STFrFT bin is 
weighted according to a uniform distribution. Here this is 
possible because the states are discrete and therefore the 
number is relatively limited. In the localization application 
the number of possible initial states is much greater, 
therefore a cost function minimization estimation scheme 
was utilized to provide the first estimate.

The implementations employed herein both used 1000 
particles. In the case of the localization the computational 
cost that implied was consistent with a real-time 
implementation, even with the algorithm implemented in 
MATLAB®. This is in part because the filter only needs 
updating approximately once per second. The 
computational load would also escalate significantly if a 
more detailed propagation model is used.

The real-time implementation of the contour extraction 
algorithm requires modification of the algorithm presented 
here as in its current form it is probably too computationally 
demanding for simple real-time implementation. One could 
exploit the potential for parallel implementation inherent in 
particle filters, but this dramatically increases the issues
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