IN-VIVO ULTRASOUND ASSISTED TISSUE ENGINEERED ARTICULAR CONDYLE

1Dept. of Dentistry and Biomedical Engineering, University of Alberta, Canada, T6G 2N8, 2Dept. of Chemical and Material Engineering, University of Alberta, Canada, T6G 2N8, 3Department of Mechanical Engineering, University of Alberta, Canada, T6G 2N8, 4Renew Oral and maxillofacial Surgery, Edmonton, Canada, T6G 2N8, 5Surgery Department, Orthopedic surgery, University of Alberta, Canada, T6G 2N8; 6McGowan Institute for Regenerative Medicine, Pittsburgh, USA, 15219.

1. INTRODUCTION

The increased prevalence of joint degeneration has led to incredible progress in the field of bone and cartilage tissue engineering [1,2]. Regardless of the current applications of cell and tissue-based therapies, such as chondrocyte transplantation [3] for the treatment of articular cartilage defects, prosthetic replacement of the entire articular surface continues to be the foremost practice for total joint replacement [4,5]. In-vitro and in-vivo experiments for tissue engineering articularcondyles were proposed to replace synovial joints such as the temporomandibular joint (TMJ) [6,8]. However, these trials did not provide convincing evidence of functional integration of the tissue engineered articularcondyles [8]. Low Intensity Pulsed Ultrasound (LIPUS) has been shown to enhance osteogenic and chondrogenic differentiation [9-10]. Also, it has been shown that LIPUS enhances bone formation and growth by bone and cartilage matrix production [11-12]. In addition, it has been shown that LIPUS enhances tissue engineering of bone construct in-vitro [12]. The aim of this study was to evaluate the effect of LIPUS on in-vivo functional integration of autologous tissue engineered mandibular condyle (TEMC) for replacement of excised temporomandibular articularcondyles.

2. METHOD

2.1 Animals.

This research was approved by the University of Alberta Animal Care Committee. Eight skeletally mature rabbits were selected and divided into three groups. Group 1 [3 rabbits] (Ultrasonic with tissue engineered mandibular condyle), group 2 [3 rabbits] (Ultrasonic with empty scaffold), and group 3 [2 rabbits] (empty scaffold, no ultrasound).

2.2 Stem cell isolation and conditioning.

All rabbits had bone marrow stem cells (BMSCs) isolated from their femur bones according to the previously established protocol [13]. BMSCs were differentiated into chondrogenic or osteogenic cells. Chondrogenic medium contained (DMEM+10% FBS + 1% pen-strep*fungizone [as a base medium] \ in addition to 0.1mM None essential amino acid + 50ug/ml ascorbic acid-2-phosphate + 10nm dexamethasone + 5ug/ml insulin + 5ng/ml TGF-B1) while osteogenic medium contained (base medium in addition to 50ug/ml ascorbic acid + 2-phosphate + 10nm dexamethasone + 7mM + 1ug/ml BMP-2). LIPUS was applied for 20 minutes/day for four weeks to the cells to enhance their differentiation.

2.3 Experiment procedure

The chondrogenic and osteogenic differentiated cells were seeded into collagen sponges (Halistate, Dental Implant Technology, Scottsdale, AZ, USA) that were housed into biodegradable extra-cellular matrix (ECM) scaffold to form TEMCs. The biodegradable scaffold was prepared as follows. The urinary bladder of market weight (6 months of age) pigs were harvested following euthanasia and cleaned of excess connective tissues and immersed in 1.0N saline to remove the urothelial cells on the luminal surface. The resulting material was referred to as urinary bladder matrix (UBM). The UBM ECM was then lyophilized. Six sheets of the UBM ECM material were laminated by vacuum pressing with placement of a central accumulation of comminuted (powdered) ECM. This local accumulation of powdered ECM was placed between the third and fourth layers, effectively creating a “pillow”. The construct was then sterilized with ethylene oxide (ETO). The central pillow region of the construct served as the meniscal substrate site while the adjacent multi-laminate sheets served as suture anchoring points.

2.3 In-vivo TMJ condylectomy and implantation of the TEMC.

The left TMJ condyle in each rabbit was excised under general anesthesia (Ketamine (70 mg/mL) and Xylazine (10 mg/mL) at a rate of 1 mL/kg IM) according to the previously published technique [14]. Post-surgical care included antibiotic (Baytril 5mg/kg) twice a day SC for about 3 - 4 days and analgesic (Metacam 0.2 mg/kg) once a day for two days SC then 0.1 mg/kg once a day as needed. Rabbits were fed a soft diet for few days then they resumed normal food. The tissue engineered condyles were implanted into the amputated temporomandibular joint (TMJ) articular condyle and were fixed in place using a hardening calcium sulfate/phosphate material (ProDense, Wright Medical Technology Canada Ltd., Mississauga, ON, Canada). In groups 2 and 3, the amputated TMJ articularcondyles were replaced by empty scaffolds. Groups 1 and 2 were treated daily for 20 minutes by an ultrasound device that delivers a power of 30 mW/cm2 with pulse frequency of 1.5 M Hz, pulse repetition frequency of 1 K Hz. Four weeks after implantation of the TEMC or empty scaffolds, rabbits were euthanized and evaluated by microCT scanning as well as by histological examination.

3. RESULTS

3.1 Gross anatomy of the dissected mandibles.

Figure 1 shows the gross pictures of the dissected mandibles in each group. It can be seen that group 1 mandible shows comparable morphological and dimensional features of the TEMC and normal condyle. However in all other groups there was no noticeable growth of the excised mandibular condyles.

Canadian Acoustics / Acoustique canadienne
Vol. 36 No. 3 (2008) - 42
3.2 MicroCT evaluation.

Figure 2 reveals that the MicroCT evaluation of the TEMC in groups 1 has similar features of the normal condyle, while the empty ECM scaffold with LIPUS shows more hard tissue formation than the implanted ECM without LIPUS.

3.3 Histological examination

Figure 3 shows the photomicrographs of the histological sections of normal (right) and left TEMC in group 1 as well as the site of implanted ECM scaffolds with or without LIPUS.

ACKNOWLEDGMENTS

This project was funded by U of A Hospital Fund grant number G533000198 and Dr. Tarek El-Bialy Start-up fund, Faculty of Medicine and Dentistry, U of A, Canada. The authors would like to thank Dr. Jie Chen and Ying Tsui Dept Electrical Engineering, U of A for their kind support in providing the LIPUS devices and Dr. Michael Doschak Faculty of Pharmacy, U of A for his support with the Micro CT scanning of the study samples.