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1. i n t r o d u c t i o n

We have successfully applied simple pattern 
recognition techniques to several problems of speech 
perception. Nearey and Hogan (1986) describe the NAPP 
(normal a posteriori probability) method, based on linear 
discriminant analysis. Nearey and Assmann (1986) apply 
NAPP to accurately predict listeners’ behavior in the 
perception of modified natural English vowels. Recently, 
variations of NAPP have also been applied successfully to 
cross-linguistic and L2 vowel perception (Morrison 2006, 
Thompson 2007). Direct application of NAPP involves 
training a pattern recognizer on natural production 
measurements and using the ‘frozen’ model to predict 
listeners’ behavior on new stimuli, without any further 
tuning. This paper sketches the use of more flexible 
pattern recognition methods in speech perception 
research. These include logistic regression and methods 
imported from automatic speech recognition (ASR) 
technology.

2. n a p p  a n d  m n l r

The APP (a posteriori probability) scores 
generated by a NAPP model can be expressed in the form 
of a multinomial logistic regression (MNLR). MLNR has 
a long history in econometrics (Train 2003) to model 
discrete choice (by, e.g., consumers). MNLR can be 
tuned to approximate listeners’ response data directly. 
The question of phonetic compositionality of perceptual 
choices among (e.g.) CV or VC syllables has been 
investigated extensively by Nearey (e.g., 1997) using 
MNLR techniques. For the cases studied, listeners’ 
sensitivity to stimulus properties seems to be linked 
phoneme- or subphoneme-sized units. Larger units such 
as syllables, do not appear to associate with specific 
stimulus patterns in the ways that lower level units do. A 
related application is discussed below.

3. VC(C)V s y l l a b l e s

Nearey and Smits (2002) describe a variation of an 
experiment by Repp (1983) which involves variable 
(phoneme) length utterances of the form of VC(C)V. We 
were not at all clear that MNLR models would reveal the 
kind of compositionality we found with simpler response 
sets. Our experiment spanned the following responses 
{aba, ada, ab#ba, ad#da, ab.da and ab.da}, where ‘# ’

indicates a phonotactically necessary (in English) word 
boundary and ‘.’ Indicates a syllable (and possibly word) 
boundary. The vowel denoted ‘a’ is low back and slightly 
rounded in the dialect under study.

3.1 Method

A total of 144 (6 x 6 x 4) stimuli were created by a 
standard Klatt80 synthesizer. The stimuli were arrayed in 
fu lly  crossed 3-factor design with the following values:
1) Closing F2 (and correlated F3) associated with VC 
(ab- and ad-) offset [1060 (2180) to 1450 (2539) Hz in 6 
steps]. 2) Opening F2 ( and correlated F3) with CV (-ba 
and -da) onset [1099 (2262) to 1635 (2500) Hz in 6 
steps]. 3) Gap Duration at 4 levels 80, 120, 190 and 300 
ms. The initial vocoid, V1 had [F1 F2 F3] targets of [ 777 
1147 2466] Hz and a fixed duration of 190 ms including 
50 ms V1C transitions; The final vocoid, V2, had the 
same target frequencies and a duration 300 ms including 
the CV2 transitions, F0 was fixed at 125 Hz for V1. And 
a linear downward trend from 125 to 100 Hz for V2. The 
amplitude of voicing (av) was set to 60 dB at the 
beginning of V1, it fell abruptly to 0 dB at V1 offset and 
rose abruptly to 60 dB at V2 onset. Participants were 13 
native speakers of Canadian English. Each responded to 
10 repetitions of each of the 144 stimuli. Response button 
layout on a PC screen was as follows:

[b] [bb] [bd]
[d] [dd] [db]

3.2 Results

An initial MNLR analysis was conducted (Nearey 
and Smits 2002). The response factor comprised the 6 
response categories above. The independent variables 
were the Closing F2, Opening F2 and Gap Duration 
(expressed as square root of ms). This model provided a 
relatively good fit, with a residual RMS error of about 6 
percentage points. The model predicted the modal (most 
popular) response of listeners for almost 94% (135/144) 
of the stimuli.

The clustering patterns of consonant responses in Figure 1 
(and associated t-tests) suggested a factored 
(compositional) solution, whereby judgment log-odds 
were tuned continuously by only the following three 
factors: (1) Closing place (ab-/ad-) was tuned only by 
Closing F2; (2) opening place (-ba-/da-) only by Opening 
F2. Finally, define a third phonetic factor, cluster type,
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comprising singletons (-b-, -d-), geminates (-b#b-, -d#d-) 
and true clusters (-b.d-, -d.b-). Then cluster type is tuned 
by (3) Gap Duration only. A reduced logistic model 
enforcing the decomposition above shows RMS error and 
modal agreement that are nearly indistinguishable from 
the full CC model. Note that this analysis involves 
splitting even singleton stops (e.g., -b-) into closing, gap, 
and opening subparts that can be shared with other C(C) 
patterns.

Fig. 1. Coefficients o f logistic regression for stimulus 
properties in experiment 1.

4. BRIDGING TO ASR METHODS

The methods describes so far involve static 
pattern recognition, requiring exactly the same number of 
signal properties for each stimulus. Outside the 
laboratory, speech chunks come in many sizes. Longer 
ones have more properties than shorter ones (e.g., 
Albuquerque vs. Al). ASR technology has developed 
several dynamic pattern recognition methods that handle 
such variable inputs. Preliminary experiments (Nearey 
2004) match the results of section 3 using a (dynamic) 
hidden semi-Markov model (HSMM, Guédon, 1992). The 
model uses sub-phone states (e.g, b-closing, cluster-gap, 
d-opening) directly related to the subphone elements of 
section 3. Using a maximum mutual information 
criterion, the HSMM can be tuned to listeners’ responses 
to performs as well as the MNLR models above. The 
HSMM uses a conventional frame-based, mel frequency 
cepstrum representation The resulting system provides a 
complete framework for modeling speech perception that 
starts with raw waveforms and culminates in accurate 
predictions of listeners’ responses. This first step bodes 
well for the future of incorporation of modeling 
technologies from ASR directly into speech perception 
research. With time, it may facilitate feedback in the other 
direction.
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