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1. INTRODUCTION 4. STACK AND HEAT EXCHANGERS

An asymptotically consistent small Mach number 
model of a complete thermoacoustic engine has been 
developed. The model couples linear acoustics in the 
resonator with a low Mach number flow model for the 
acoustically compact assembly stack + heat exchangers.

2. PHYSICAL MODEL

Both linear acoustics and incompressible flow are low 
Mach number approximations to the equations of gas 
dynamics. However the former assumes length and time in 
a ratio of the order of the speed of sound while the latter 
assumes a ratio comparable with the fluid velocity. For a 
common time scale, the two models assume length scales in 
the order of the Mach number M. Additionally [1-3], for the 
latter, a low Mach number approximation can be derived 
allowing for arbitrary spatially uniform pressure fluctuations 
that are superimposed to the dynamic correction of order 
M 2 that characterizes incompressible flow. An 
asymptotically consistent model of a complete 
thermoacoustic engine can be constructed matching these 
two approximations. Geometry is described in Fig. 1.
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Fig. 1. System geometry
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In the stack and heat exchangers, calling u the velocity 
vector, and p ”(x,t) the order M 2 dynamic pressure 
correction, the multidimensional flow is represented by the 
conservation equations for mass, momentum and energy:
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where k  is the thermal conductivity, y is the ratio of specific 
heats and T is the stress tensor, related to velocity in the 
usual way for Newtonian fluids. Pressure, density and 
temperature are related by the equation of state, 
p= p(x,t)RT(x,t). While this formulation supports time- 
dependent pressure at leading order, the linear acoustics 
model in the resonator will only support fluctuations p ' at 
order M , to which the heat exchanger section is transparent. 
Leading order pressure p is an absolute constant, which 
results in further simplification in the energy equation. The 
heat exchanger model is completed by conservation of 
energy in the stack, which is governed by a standard heat 
equation. At the boundary, temperature and the heat flux 
vector are continuous.

The solution is obtained using a code derived from [4], 
that is second order accurate in time and space. Viscous and 
conductive terms are dealt with using an implicit 
formulation, while advective terms are explicit. Time 
integration uses a predictor-corrector formulation.

3. ACOUSTICS

The Riemann variables L(x,t)=p’-puc and 
R(x,t)=p’+puc, in which u is the longitudinal velocity, T  and 
p, leading order temperature and density, and p' the order 
M  acoustic pressure correction are introduced. L and R  are 
constant respectively on characteristics moving left and 
right at the speed of sound c. In the resonator, u and p ' vary 
in space and time, while p  is constant. p  and T  are constant 
but with different values on the two sides of the heat 
exchangers. Taking the outer boundary conditions into 
account, L at the left end of the heat exchanger section at 
time t is related to R  at the same location at t minus the 
round-trip time. Likewise R  at the right end of the heat 
exchangers depends upon the previous value of L at that 
end. This results in two relationships between acoustic 
pressure in the heat exchangers to the velocities at the ends.

5. MATCHING

Acoustics provide two equations relating acoustic 
pressure in the compact heat exchanger section to the 
velocities at the two interfaces. Integration of the energy 
equation in the heat exchangers (above) over the heat 
exchangers computational domain results in a third one, 
relating the velocities at the two ends to heat transfer. Thus, 
while it is transparent to the acoustic pressure, the heat 
exchanger section appears in the acoustics as a point source 
of volume. Solving the three equations completes the 
acoustic formulation and, at each time step, provides 
boundary conditions to the numerical low Mach number 
flow model.

6. RESULTS

Results were obtained for a resonator length of 8 m and a 
stack 0.15 m long, located at 1 m from the warm end. Cold 
end temperature was 293 K. The fluid was helium at 1 MPa.
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The stack was made of stainless steel 304L, with thickness 
0.2 mm and distance between plates, 0.77 mm. 
Temperature ratios Thot/TCold of 1.3 and 2 were considered. 
Figure 2 shows the pressure history, while Fig. 3 shows 
velocities and Fig. 4, the phase relationships, for 
temperature ratio 1.3 and a standing wave as initial 
condition. Figures 5 and 6 refer to a temperature ratio of 2, 
respectively for a standing wave and for resonant noise as 
initial conditions. A resolution of 34 by 1024 grid points 
was used in space and of 628 time steps/period.
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Fig. 2. Temperature ratio 1.3 -  Stack pressure history
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Fig. 3. Temperature ratio 1.3 -  Stack end velocities

The results on Figs. 2 to 4 show that for lower temperature 
ratio, the lowest resonant mode is the most unstable; growth 
rate is 3.2 s-1. However, for the higher temperature ratio, the 
second mode manifests itself and grows faster, regardless of 
whether the system was excited by random noise or by the 
resonant mode. Starting with noise, growth rates are 
respectively 8 s-1 and 13.5 s-1.

Fig. 5. Temperature ratio 2 -  Initiation with standing wave.

Fig. 6. Temperature ratio 2 -  Initiation with random noise.

REFERENCES
[1]S. Paolucci. (1982) On the filtering of sound from the Navier- 
Stokes equations. Sandia National Laboratories report SAND82- 
8257.
[2]A. Majda and J.A. Sethian. (1984) The derivation and numerical 
solution of the equations for zero Mach number combustion. 
Combust. Sci. Tech. 42, 185-205.
[3]L. Bauwens. (1996). Oscillating flow of a heat-conducting fluid 
in a narrow tube. J. FluidMech., 324, 135-161.
[4]P. Le Quéré, C. Weisman, H. Paillère, J. Vierendeels, E. Dick, 
R. Becker , M. Braack and J. Locke. (2005) Modelling of Natural 
Convection Flows with large Temperature Differences: A 
Benchmark Problem for Low Mach Number Flow, Part 1. 
Reference Solutions. ESAIM: M2AN, 39 (3), 609-616.

ACKNOWLEDGMENTS
Support from the Natural Science and Engineering Research 
Council of Canada is gratefully acknowledged.

The computations were performed on the NEC SX8 of the 
CNRS-IDRIS Computing Center.

Fig. 4. Temperature ratio 1.3 -  Phase relationships. 
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