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1. i n t r o d u c t i o n

This paper compares two approaches, within a 
Bayesian context, to localizing and tracking a low-level 
acoustic source in the ocean when environment properties 
are poorly known. Optimization is based on determining the 
source and environmental parameters that maximize the 
multi-dimensional posterior probability distribution (PPD). 
Marginalization integrates the PPD over nuisance 
environmental parameters to obtain marginal probability 
distributions over source range and depth, and the optimal 
track is determined from these marginal distributions. The 
question addressed here is which method yields track 
estimates that are, on average, closer to the true track.

2. t h e o r y

Let m and d represent the model and data vectors, 
respectively, with elements considered random variables 
that obey Bayes rule, which may be written

P(m  | d) «  L(m, d)P(d).

In the above equation, P(m|d) represents the PPD which 
quantifies the information content for the model parameters 
given both data information, represented by the likelihood 
function L(m,d), and prior information P(m). The likelihood 
can typically be writtenL(m, d) «  exp[-E (m, d)] where E 

represents an appropriate data misfit function.

The multi-dimensional PPD is typically characterized in 
terms of parameter estimates and uncertainties, such as the 
maximum a posteriori (MAP) model and marginal 
probability distributions, defined by

m = Arg {P(m | d)}
maxv }

P(mt ,mJ | d) = \S(m i - m'i)8(m J - m’J)P(m ' | d )dm'.

Optimization seeks the source track and environmental 
parameters that minimize the misfit to acoustic data (i. e., 
the model MAP estimate) For efficiency, the optimization 
is carried out only over environmental parameters, since the 
most probable source track (subject to source velocity 
constraints ) given the environmental parameters can be 
calculated using the Viterbi algorithm [1]. Optimization is a 
generalization of the focalization technique [2] to source 
tracking. Both adaptive simplex simulated annealing [3] and 
differential evolution have been used for optimization with 
good success.

Marginalization requires integration over the environmental 
parameters [4] to obtain track marginal distributions. Here 
integration is carried out using the method of fast Gibbs 
sampling (FGS), which applies Markov-chain Monte Carlo 
importance sampling methods in a principal-component 
parameter space. The Viterbi algorithm can then be applied 
to determine the optimal (most probable) track from the 
marginal distributions.

3. RESULTS

The optimization and marginalization approaches 
are compared here with a synthetic example illustrated in 
Fig. 1. The geoacoustic parameters include the thickness h 
of an upper sediment layer with sound speed cs, density p ,  
and attenuation as, overlying a semi-infinite basement with 
sound speed cb, density pb and attenuation ah The water- 
column sound speed profile is represented by four unknown 
sound speeds c1-c4 at depths of 0, 10, 50, and D m, where D 
is the water depth. A low-level 300 Hz source travels at 
constant depth of 20 m and at a constant velocity of 5 m/s. 
Acoustic fields from this source are recorded at a 24-sensor 
vertical array (VLA) once every minute for nine minutes, 
during which the source moves from 4-km to 6.4-km range. 
For the inversions, wide prior bounds are applied for the 
geoacoustic and water column parameters, and the source 
horizontal and vertical velocities are constrained to be less 
than 10 m/s and 0.07 m/s, respectively.

For the study carried out here, acoustic data are 
considered at six different signal-to-noise ratios (SNRs), 
with average SNRs along the track ranging from -11 to -3 
dB (the SNR decreases along the track by approximately 6 
dB due to the increasing range). At each SNR, 20 different 
noisy data sets were inverted using both optimization and 
marginalization. Figure 2 shows the probability of an 
acceptable track (PAT), defined as mean absolute depth and 
range errors less than 10 m and 500 m, respectively, for
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Fig. 1. Geometry and model parameters.
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optimization and marginalization, including one standard- 
deviation error bars. Also included in the figure for 
reference are PATs computed via the Viterbi algorithm 
using either exact knowledge of the environmental 
parameters or environmental parameters drawn at random 
from the prior bounds. The key result is that marginalization 
gives significantly better average results than optimization, 
particularly for SNRs of -9  to -3 dB. Marginalization has 
the added benefit that the marginal distributions used to 
calculate the optimal track provide a measure of track 
uncertainty. Figure 3 shows an example at SNR = -6  dB 
with one mean-deviation uncertainties about the optimal 
track.

4. SUMMARY

The study carried out here indicates than marginalization 
significantly outperformed optimization for source tracking 
in an unknown ocean environment. In addition, 
marginalization also provides a measure of the track 
uncertainty. However, the integrations required in 
marginalization require greater computational time effort 
than optimization.

Fig. 3. Example of track estimate and uncertainty. The true track 
is indicated by open circles and the estimated track by filled circles 
with mean-deviation uncertainties.

REFERENCES
[1] Viterbi, A. J. (1967) Error bounds for convolutional codes and 
an asymptotically optimum decoding algorithm. IEEE Trans. Inf. 
Theory IT-13, 268-269.
[2] Collins, M. D., and W. A. Kuperman (1991). Focalization: 
Environmental focusing and source localization. J. Acoust. Soc. 
Am., vol 90, 1410-1422.
[3] Dosso, S. E., M. J. Wilmut and A. L. Lapinski (2001). An 
adaptive hybrid algorithm for geoacoustic inversion. IEEE. J. 
Ocean. Eng., vol 26, 324-336.
[4] Dosso, S. E. and P. L. Nielsen (2002). Quantifying uncertainty 
in geoacoustic inversion II: A fast Gibbs sampler approach. J. 
Acoust. Soc. Am., vol 111, 143-159.

Ave SNR (dB)

Fig. 2. Comparison of optimization (open circles) and 
marginalization (filled circles) results for tracking. Dotted and 
dashed lines indicate results using exact and random environmental 
parameters, respectively.
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