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1. i n t r o d u c t i o n

In recent years, the Lattice Boltzmann Method 
(LBM) has emerged as a promising computational 
technique in fluid dynamics. LBM has some intrinsic 
advantages over conventional Navier-Stokes schemes [1] 
such as ease of parallel implementation.

The main difference between LBM and conventional 
Navier-Stokes schemes is that, Navier-Stokes equations 
are derived explicitly for the macroscopic properties of 
the fluid, while LBM ’s involve the solution of lattice- 
Boltzmann equation (LBE) by explicitly tracking the 
development of particle distribution functions either at the 
mesoscopic or the microscopic scale. Using the Chapman- 
Enskog expansion, the compressible Navier-Stokes 
equations can be recovered from the LBE at the 
hydrodynamic limit.

Recently, the LBM has been evaluated and utilized 
for some aeroacoustics applications. However, robust 
nonreflective boundary conditions are still needed for 
LBM. As underlined in one recent study [2], little work 
has been reported on this topic.

In the present study, a boundary condition was 
developed based on the perfectly matched layer (PML) 
concept introduced by Berenger for numerical simulations 
of electro-magnetic fields [22]. The most significant 
feature of the PML technique is the fact that it creates 
absorbing layers that are theoretically non-reflective for 
any angle and frequency of incident wave. Moreover, the 
intrinsic linearity and computational scheme robustness of 
LBE prevent instabilities and complexities associated 
with nonlinear convection terms which are present in 
Euler and Navier-Stokes equations.

2. A PML FORMULATION FOR LATTICE 

b o l t z m a n n  m e t h o d s

The lattice Boltzmann equation is one discrete form of the 
continuous Boltzmann equation:

^ + ( | - F ) / = n , (1)

where Q is the inter-molecular collision operator. In 
order to facilitate solution of the Boltzmann equation, the 
collision operator is usually simplified using the 
Bhatnagar-Gross-Krook (BGK) approximation:

f - f e g
n  =  - (2)

where t  is the relaxation time and feq is the local 
equilibrium Maxwell-Boltzmann distribution. The 
hydrodynamics properties such as density, momentum, 
kinetic energy, and others can be obtained by different 
moments of the equilibrium distribution function in the 
phase space. To enable numerical integration of these 
moments, the distribution function is obtained only for 
certain velocity directions which are the abscissas of a 
Gaussian-type quadrature. These velocity directions form 
a DnQm lattice, where n is the number of dimensions of 
the flow field and m is the number of velocity directions 
within the lattice. A D2Q9 lattice which is commonly 
used in 2D simulations is shown in Figure 1.

Figure 1. A D2Q9 lattice used in 2D simulations.

The decomposition of the equilibrium distribution 
function into the sum of a mean component, which 
corresponds to the hydrodynamic field, and a perturbation 
component, which corresponds to the acoustic 
perturbation, yields a set of equations consistent with the 
Boltzmann equation at the interface between the 
absorbing zone and the interior domain (see Figure 2).

The following formulation is proposed for the 
absorbing zone in a lattice Boltzmann simulation:

§ 7 +  ( I - v ) f =  n -  u PML, (3)

where

n PML =  f f ( f  • i?' ) Q + 2 a ( / c, -  / Q  +  <j 2Q ,
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The details of the derivation are presented in Ref [4]. It is 
notable that the PML role is encapsulated in only one 
single additional term to the collision operator. The 
damping coefficient a controls the decay rate of the 
waves entering the PML zone. Eq. (3) can then be made 
discrete in the same manner as the classical lattice 
Boltzmann method. The damping coefficient is 
predefined by the user at the beginning of the simulation 
considering the thickness of the PML region.
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Figure 2. PML setup in a 2D simulation.

4. Numerical Examples and Discussion
4.1. Propagation o f  a Gaussian Acoustic Pulse

One classical problem to assess the performance of 
numerical boundary conditions is the propagation of a 
Gaussian pulse. The following initial conditions were 
imposed in this case:

x 2 +  y 2
p  =  1 +  0.0001 exp (— In 2 — ------)

u = 0 
v =  0

All quantities are made non-dimensional using the grid 
spacing and mean density. The pulse was initially located 
at the center of a 256 by 256 nodes grid. A 40-lattice wide 
PML was created between the interior domain and the 
northern boundary while conventional outlet (zero normal 
gradients) BCs were chosen for all other boundaries. A 
damping coefficient of 0.03 was chosen for the PML. The 
attenuation of the wave in the PML is demonstrated in Fig 
3. Almost no reflection from the northern boundary was 
observed. Similar simulations have also been performed 
with PML boundary conditions on all boundaries, and in 
situations where the Gaussian pulse exits the boundary in 
presence of a mean flow with arbitrary direction. 
Excellent results were obtained for all cases.
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Figure 3. Gaussian pulse propagation; (a) t = 0; (b) t = 
200; (c) t = 280; The PML is located on the north 
boundary. All dimensions are normalized by lattice units. 
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