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1. INTRODUCTION

The speech waveform can be efficiently represented as 
an autoregressive (AR) process. Speech AR modelling is 
referred to as linear predictive coding (LPC) because the 
current speech signal sample x(n) is represented as a linear 
combination of previous samples: 

p
x(n) = ^ a (k )x(n -  k ) + u(n) = a x(n) + u(n), (1)

k=1

where aT = [a (1 ),...,a (p )] is the vector of autoregressive 

model coefficients, x T (n) = [x(n - 1 ) , . . . ,  x(n -  p )] is the 

signal vector, p  is the model order and u (n) is the excitation 
sequence. The use of AR models for speech signals has a 
physiological justification as u (n) corresponds to the 
excitation from the lungs and the filter defined by the AR 
model coefficients corresponds to the all-pole vocal tract 
filter. The roots of the AR coefficient polynomial define the 
resonances of the filter which produce the characteristic 
formant peaks in the speech spectrum.

The parametric form of the AR model provides an efficient 
and low-variance representation of the speech signal 
spectrum. This allows for substantial compression gains in 
speech communications, and can also be applied to speech 
signal enhancement. Additive background noises - such as 
building ventilation system or in-car road noise - reduce 
speech intelligibility for human listeners and degrade the 
performance of automated speech and voice recognition 
systems. Speech enhancement algorithms attempt to 
remove the additive noise without distorting the desired 
speech signal. If the AR parameters of the clean speech 
signal are known, and the excitation and measurement 
signals are white Gaussian noise, Equation (1) can be 
arranged into a linear state-space form. This allows the 
Kalman filter equations to be used to obtain the minimum 
mean-square error (MMSE) optimal estimate of the clean 
speech waveform (Paliwal and Basu, 1987). By enforcing 
an AR model structure, Kalman filter speech enhancement 
provides high quality enhanced speech with natural 
sounding residual noise.
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Fig. 1. Spectra obtained from fullband and subband AR modelling 
of an AR (20) process.

speech. While wideband speech improves the listener 
experience, it creates problems for AR speech modelling. 
The computational complexity of systems using AR speech 
models grows rapidly as the model order increases. Also, 
high-order models require more data to reliably estimate the 
parameters, but speech signals are only stationary over a 
short time. Low-order models are therefore desirable, 
however very high-order models are required to capture the 
pitch structure (Puder, 2006), and the deep troughs and steep 
slopes of the wideband speech spectrum.

An alternative to using a single high-order AR model is to 
use a filterbank to decompose the speech signal, and to 
model each subband channel with a very low-order AR 
model. Since the model parameters and energy level of 
each band are determined independently, subband AR 
models need not exhibit the same spectral smoothness of 
fullband models, and may permit better modelling of steep 
spectral slopes and troughs. Furthermore, as the processing 
of each subband signal is carried out at a decimated (time- 
reduced) rate, the number of computations per unit time 
may be decreased. It has been demonstrated (Rao and 
Pearlman, 1996) that with ideal filterbanks, subband AR 
models can achieve lower modelling error. Here we 
investigate the performance of realizable filterbanks.

2. s u b b a n d  a r  m o d e l l i n g

The rise of digital networks has enabled the emergence 
of systems transmitting wideband (16 kHz sampling rate)

To compare the performance of low-order fullband and 
subband AR modelling of complex signals, an AR(20) 
process was generated by passing white noise through an 
all-pole filter measured from a segment of voiced speech.
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Fullband AR(4) and AR(16) models were fit to the signals, 
and an AR(1) model was fit to each band of a 16-band 
cosine modulated filterbank, designed using the approach in 
(Lin and Vaidyanathan, 1998). The resulting spectral 
estimates are shown in Fig. 1. The AR(4) curve shows that 
when low-order fullband AR modeling is used to estimate a 
higher order process, the smooth fitting of a curve between 
the poles causes the signal energy between the poles to be 
significantly over-estimated. While the AR(16) model is an 
improvement over the AR(4), the subband estimate still 
provides the closest fit. The root mean squared error 
between the true estimated signal spectra for the AR(4), 
AR(16) and subband AR(1) models are 6.56 dB, 4.16 dB 
and 3.32 dB respectively.

3. SUBBAND KALMAN FILTERING

In the context of Kalman filter speech enhancement, the 
over-estimation of the spectral troughs by the low-order 
fullband AR models leads to increased residual noise, as the 
noise between spectral peaks is treated as speech. If the 
residual noise is sufficiently far from a formant peak, it will 
not be masked by the formant and will be perceptually 
noticeable. This problem is more prominent in wideband 
speech where the spectral dynamic range within a speech 
segment is higher, and there can be high and low frequency 
energy in the same frame. The better spectral modelling 
provided by a subband AR model may therefore be 
exploited in Kalman filter speech enhancement to achieve 
better noise reduction, and has been shown to offer good 
sound quality (Puder, 2006). As an added benefit, the 
subband signal decomposition enables frequency-dependent 
processing strategies. Speech formant peaks are 
concentrated in the low-frequency regions, while the high 
frequency regions are spectrally flatter; using different 
model orders in different bands could provide a further 
complexity reduction without degrading the model estimate.

Simulations were carried out to compare fullband and 
subband Kalman filter enhancement of a speech signal 
degraded by white Gaussian noise at an overall SNR of 
approximately 10 dB. Fullband AR(8) and AR(16) 
configurations were tested as were two subband 
configurations: one using AR(1) models in all bands, and 
another using AR(1) models in the lower 8 bands and AR(0) 
models in the upper 8. Table 1 presents the signal to noise 
ratio (SNR) results and Fig. 2 presents the spectra of a 
voiced speech segment obtained from the enhanced output. 
The improved modelling of the spectral troughs allows the 
subband configurations to achieve higher noise suppression, 
especially in the higher frequencies.

4. DISCUSSION

Wideband speech signal spectra can possess 
multiple peaks and deep troughs within the same short time 
segment. This diverse spectral character motivates the use 
of frequency-dependent processing strategies such as

subband AR modelling. Kalman filter speech enhancement 
was used to demonstrate the potential benefits of this 
approach. In addition to offering better modelling 
performance at a lower complexity than the same order 
fullband model, subband systems allow the designer to vary 
the model parameters with frequency. A heterogeneous 
processing strategy using different model orders in high and 
low bands was shown to offer comparable noise reduction at 
a reduced complexity.

Table 1: Segmental and overall SNR scores.

Configuration Segmental SNR Overall SNR

Noisy Signal 0.96 dB 10.32 dB

Fullband AR(8) 5.21 dB 15.27 dB

Fullband AR(16) 5.28 dB 15.33 dB

Subband AR(1) 7.48 dB 18.25 dB

Subband AR(1/0) 7.46 dB 18.21 dB
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Fig. 2. Spectra of voiced speech segment from clean, noisy and 
fullband and subband Kalman filter enhanced signals.
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