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1. INTRODUCTION

If a genuine, real-time solution to the cocktail party 
problem[1] could be found, it would have many potential 
applications. These uses would include for example: 
interference suppression for hearing aids, improving 
environmental awareness for wearers of active noise control 
headsets, as well as improving the audio quality of 
telephone conversations. Surveying the literature however, 
one finds that while there has been much work done on the 
subject of cocktail party processing and computational 
auditory scene analysis[2], essentially none of it has dealt 
with the problems of real-time and embedded processing[3]. 
This is an important challenge given that the previously 
mentioned applications must run in real-time while using 
minimal computational resources.

2. Computational Auditory Scene Analysis 
(CASA)

As the name implies, Computational Auditory Scene 
Analysis, is the machine-based counterpart to Bregman’s 
Auditory Scene Analysis[4]. While there are many different 
variants of the computational process, they all share the 
same essential feature: given some discrete time-frequency 
decomposition, assign an individual unit s(t,f) a gain m(t,f) 
such that the desired target signal is preserved, and the 
unwanted interference is suppressed.

The classification procedure is ultimately based on simple 
approximations of the four basic cues outlined by Bregman: 
the interaural time-difference (ITD), interaural intensity 
difference (IID), pitch and temporal onset. All four of these 
cues have simple signal processing analogues. The ITD and 
pitch, for example, can be computed via the cross­
correlation and auto-correlation functions respectively, 
while IID and onset are based on comparisons involving the 
signal’s power envelope. These basic computations are all 
well-established in the CASA literature.

3. Data Fusion in CASA Systems

Data fusion in CASA systems is not a trivial matter given 
the highly variable nature of the acoustic environment. This 
variability exists from moment-to-moment as a particular 
environment changes, as well as on a room-to-room basis, 
given that any CASA unit must be able to operate in a wide 
variety of different general environments. Attempts at 
producing statistically optimal fusion rules therefore have 
not been successful given the grave difficulties in actually 
forming the real-world probabilities for the range of 
scenarios that can exist. This is further complicated by the 
computational complexity of such estimation algorithms,

which severely limits their practicality in real-time and 
embedded systems.

3.1 Hierarchical Cue Fusion

Consideration must therefore be given to the behaviour of 
these cues in realistic environments, and their respective 
robustness to noise and reverberation.

We based our approach to cue fusion on the following two 
principles:

1)The most acoustically robust cues are the most important in 
terms of grouping. Less robust cues should be used in a 
supplementary role in order to constrain the association of the 
primary cues.

2)The variability of the cue distributions means that the 
interpretation of the cues must be in terms of the mean and 
variance over several channels, and not in terms of individual time- 
frequency units.

In practice, these principles can be realized given the 
knowledge that both the speech onset period and periods of 
approximately constant pitch[5] are relatively robust to 
noise and reverberation when compared to both the ITD and 
IID. These last two cues, although less robust, supply the 
spatial information necessary for speech separation, and 
must therefore be aggregated in order to resolve a stream’s 
identity.

3.2 Fuzzy Logic Data Fusion

Owing to the previously mentioned limitations of 
probabilistic methods, as well as the rule-based nature of 
Bregman’s outline, the use of fuzzy logic for data fusion is a 
natural choice. Cue fusion therefore, can be described in 
terms of a series of IF-THEN  rules that make use of 
somewhat vague definitions. For example, the combination 
of the ITD and IID can indicate the presence of a target 
speaker at some pre-defined spatial location. In other 
words, IF  “most” of the ITDs AND “most” of the IIDs 
indicate the presence of a target, THEN a target is “likely” 
to be present. The time-frequency mask for CASA 
segregation can be readily formed using the truth-values of 
the applicable fuzzy rules, thus forming a “softmask” 
approach to segregation.

3. Control and Adaptation

The reliability of the auditory cues, and as a consequence, 
the reliability of the fusion mechanisms, depends on the 
acoustic environment in ways that are difficult to quantify.
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On the whole however, it can be said that increasing levels 
of noise and reverberation reduce the quality of the filtered 
signal. Two combat these different sources of interference, 
two adaptation methods were incorporated into the FCPP.

3.1 Recursive Smoothing

In the FCPP, this scheme takes the form of the double-sided 
single-pole recursion[6] shown in equation (2):

j ) = A O  • p(f, j ) + (i - A O )  • f r t ,  j  - i ) (2)

where p(t,j) is the truth value of the fuzzy rule relevant to 
the th time-step, and jth frequency bin. The time-varying 
smoothing parameter is f%f), and the smoothed gain estimate

is P (t,j ) .

The smoothing parameter depends on the presence or 
absence of an onset period. As these segments are relatively 
free of reverberation, their associated spatial cues are more 
reliable, and the relevant frames should therefore be given 
greater emphasis in terms of the level of certainty (gain) 
attached to them. This is accomplished by letting the 
smoothing value take on two different values as shown 
below

P(S ) =
0.3 if onset = TRUE 

0.1 if onset = FALSE
(3)

dominated by interfering sources located somewhere behind 
the listener.

5. Results

In the experiment shown below, a target signal in a 
reverberant room was positioned straight ahead of a 
KEMAR dummy is embedded in a scenario with three 
competing talkers positioned at azimuths of 67°, 180°, and 
270°, with the respective time positions of the signals being 
randomized.

Input SIR vs. Output SIR For HINT Sentences Under Heavy Reverberation Using the FCPP

Figure 5. Output segmental SIR for a given input SIR in 
a reverberant room.

3.2 The Gain Floor

The second aspect of the control problem performs the task 
of controlling the level of musical noise by adapting to 
changing levels of background noise. This problem was 
addressed not by smoothing, but by selectively adding in the 
unprocessed background noise. Specifically, the final gain 
calculation for the controller is expressed as

g ( t , j )  = p (t, j ) + ->p(t, j )  • FLOOR (4)

where g(t,j) is the gain for the jth  frequency bin at time t, 
p (t, j )  is the smoothed gain estimate from (2), p(t, j ) is

its complement, and the value of FLOOR is dependent on 
the currently estimated SNR.

4. Post-processing Using Spectral Subtraction

The cue fusion and estimation routines that have been 
described so far are unfortunately ambiguous with respect to 
noise sources located behind the listener. That is, the 
directional cues are unable to distinguish between sources 
that are in front of, or behind, the listener. In order to 
overcome this problem, the use of an additional pair of 
directional microphones is proposed. A very simple 
variation of the standard spectral subtraction algorithm can 
then be used to distinguish between frames dominated by 
the target, situated in front of the listener, and frames
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