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1. INTRODUCTION

The development of intelligent devices is becoming a 
popular trend in the hearing aid industry. Such devices aim 
at making the user’s listening experience more natural and 
at improving customer satisfaction. One focus of interest in 
this paper is the automatic adjustment of the hearing aid 
control settings to minimize the need for manual user 
interventions. The proposed system is based on 
computational intelligence tools, namely artificial neural 
networks and neurofuzzy systems, which have the ability to 
learn the dynamics of highly nonlinear systems without the 
need for the explicit knowledge of their mathematical 
models. Such techniques are adopted here to map the 
acoustic features (input space) to the desired volume setting 
(output space) of the hearing aid user. Eventually the 
proposed system would be integrated into a trainable self­
learning hearing aid, such as [1] and [2].

In this paper, two computational intelligence tools, a multi­
layer perceptron (MLP) and an adaptive network-based 
fuzzy inference system (ANFIS) were analyzed on three 
simulated users with moderate, severe, and profound 
hearing losses. A hearing aid simulation system provided 
target volume settings to train and test the learning 
networks, selected to optimize the speech intelligibility 
index (SII) in each acoustic situation [3]. The performances 
of both soft computing models obtained from over 2000 
recordings demonstrated a high efficiency of the adopted 
approach in automatically optimizing volume settings for 
the three simulated users. The framework of the system is 
presented in the following section.

2. m e t h o d

The objective of this paper is to develop an automatic 
volume control system to optimally match the volume gain 
preferences of the hearing aid user in different acoustic 
situations. The automatic volume control system proposed 
contains the followings stages: a large data set of 
environmental audio files, feature extraction, selection of 
the influential features and mapping of features to their 
optimal volume setting (computational intelligence tool). 
The system’s layout is depicted in Figure 1.

2.1 Experimental Data

Audio Files

A virtual environment simulator was used to generate 
environmental noises. The virtual environment simulator 
can emulate speech distortion in real environments, thus 
creating realistic training and testing data for the network. 
The sound database used for experiments consisted of a total 
of two thousand noisy speech files, which mimics typical 
environmental conditions.

Target Volume Settings

Target volume settings are obtained through a simulated 
hearing aid user assumed to adjust its hearing aid to 
optimize intelligibility at all times. This set of targets, 
defined as the volume settings for maximum SII in all 
environment conditions, is required to train the networks to 
map features into optimal volume settings. Users with 
moderate, severe and profound hearing loss (HL) and 
different uncomfortable listening levels were simulated.

Fig. 1. System’s Layout.

Fig. 2. Generation of target volume settings.

2.2 Feature Extraction
To perform mapping of the feature input space to the output 
space, it is desirable to extract a set of feature vectors which 
preserves information that is highly correlated to the output 
space. Doing so will improve the performance of the 
network and decrease processing time. Twenty-four real 
valued features were considered, including a number of 
frequency-domain and time-domain features. Features were 
extracted from frames of a sampled audio signal, with no 
overlap between frames.

2.3 Feature Selection
Feature selection can provide a sub-optimized set of features 
and reduce the dimensionality of the feature vector. The 
selection criteria typically involves the minimization of a 
measured error from models with different inputs. A starting 
set of 24 features is considered, and then a subset of highly 
correlated features is selected by using a feature selection 
method known as the sequential forward search (SFS) [4]. 
The SFS method was used to select three sets of influential 
features. Each set corresponds to a certain simulated user 
(moderate, severe and profound) and includes six influential 
features.
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2.4. Mapping

Two computational intelligence tools were considered to 
perform the mapping, the MLP and ANFIS models [5], 
which were analyzed on the three simulated users.

Learning Process

The learning process for both the MLP and ANFIS models 
is divided into three phases: training, validation and testing. 
The training process requires a set of network inputs and 
target outputs for the models to learn (shown in Figure 2). 
Training allows the models to become familiar with every 
possible situation. Validation improves the models’ 
generalization during testing and avoids the models from 
“overfitting” the training data. Finally, the testing stage 
provides the models with unfamiliar data and will determine 
the models’ robustness and ability to make generalizations 
on unfamiliar data.

3. RESULTS

For cross-validation, the data set is partitioned into three 
groups, 1200 files (60%) for training, 400 files (20%) for 
validation and 400 (20%) for testing. The performance of 
the models is measured by determining how accurate the 
predicted outputs of the models are, after training and 
testing. The predicted output of the model is compared 
against the target signal and when the mean square error 
between the two is minimized, the performance of the 
model is maximized. The performance measure is evaluated 
by the volume error (VE) and the absolute value of the 
speech intelligibility index error (SIIE), presented in the 
following equations:

VE(i)=Vopt(i) -  Vpred(i) (1)

SIIE(i) = \SIIopt(i) -  SIIpred(i) | (2)
where i refers to each pattern, the subscript opt and pred 
refer to the target and the quantity predicted by the network, 
respectively.

Figure 3 presents the MLP’s testing performance. The plot 
is the volume error (equation 1) for each testing pattern for 
the moderate HL user. At first glance, there are a number of 
volume errors greater than 20 dB. However, this may not 
necessarily result in a high SII error. Indeed, Figure 4 
demonstrates that the great majority of the audio files 
resulted in a low SII error (equation 2).

Fig. 3. Volume error plot. MLP’s testing performance for the 
moderate HL user.

Fig. 4. SII error plot. MLP’s testing performance for the moderate 
HL user.

Figure 5 compares the testing performances of the MLP and 
ANFIS models for the moderate user. For 95% of the testing 
patterns, the MLP’s performance obtained an SII error of 
less than 0.02 and ANFIS obtained an SII error of less than 
0.005. This demonstrates ANFIS’s ability in optimizing the 
moderate HL user’s speech intelligibility more effectively.

SII ERROR
Fig. 5. SII error plot of MLP versus ANFIS testing performances 
for the moderate HL user.

4. DISCUSSION

From the plots presented in the results, the MLP optimized 
the volume setting for the majority of the testing patterns for 
the moderate HL user. As a result the speech intelligibility 
index for the moderate HL user was optimized as well. In 
conclusion, both the MLP and the ANFIS showed high 
accuracy in automatically optimizing the SII for a simulated 
user. ANFIS performance in terms of SII error is slightly 
advantageous compared to the MLP’s performance. A 
future direction of this research is to test the proposed 
system on real human subjects.
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