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1. in t r o d u c t i o n

A desirable feature of modern hearing aids is the ability 
to automatically adjust its behavior in different acoustic 
environments. There are two kinds of approaches that can 
achieve this. One is based on “classification” of 
environments, another is “direct learning” of preferred 
hearing aid settings. Our focus is on the second approach, in 
which an artificial neural network (ANN) learns the 
preferred volume setting of the hearing aid user. The 
performance of such a direct-learning system strongly 
depends on the chosen signal features. While a large number 
of features have been derived for environment classification 
(Büchler, 2002; Nordqvist et al, 2004), we are now aware of 
any that have been derived specifically for “direct learning”, 
which has different requirements. For example, environment 
classification should not in general be sensitive to the sound 
volume, whereas direct learning of volume setting not only 
depends on the volume, but also depends on how this 
volume affects speech intelligibility and user comfort. 
Moreover, the preferred volume setting depends on the 
hearing loss profile, and whether it is profound, severe, or 
moderate. The goal of this work is to derive suitable 
features that the ANN will use to set the volume such that it 
optimizes speech intelligibility. New features are proposed, 
which are based on measures of speech intelligibility, 
namely the Speech Intelligibility Index (SII) (ANSI S3.5- 
1997) and the Coherence SII (CSII) (Kates and Arehart, 
2005). The performance of these features is then 
investigated using a simulator of a hearing aid user (SPOT, 
2009).

2. METHOD

2.1 Perceptually-dependent Features

The new features are derived from the calculation of the 
CSII in third-octave bands (ANSI S3.5-1997; Kates et al, 
2005), and they reflect the SNR and energy of the speech 
signal in these bands, weighted by the psychocacoustic 
characteristics of the listener. They are calculated as 
follows:

- The pure and distorted speech files, x(n) and y(n), 
respectively, are divided into 50% overlapping segments. 
Each segment is multiplied by a Hamming window, and 
then the segments ym(n) are categorized into three groups for 
high, medium and low energy segments.

In each energy group, the following steps are repeated to get 
the CSII in each band.

1. The spectra of xm(n) and ym(n), i.e. Xm(k) and Ym(k) are 
obtained using FFT, and then the coherence measure for 
each group is estimated as follows:
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where m is the segment index, k  is the FFT bin index and M  
is the number of segments.

2. Then, the perceptual weighting procedure in ANSI 
S3.5-1997 is used to calculate CSII in each third-octave 
band. The hearing loss profile is involved in this procedure. 
The difference of CSII and SII in the standard is that the 
SNR is replaced by the signal distortion ratio (SDR) (Kates 
and Arehart, 2005):
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where Syy(k) is the estimated power spectral density of the 
distorted signal and j  is the index of third-octave band. W is 
the simplified ro-ex filter for the band.

- For each third-octave band, one new feature is calculated 
by combining the weighted CSII for the three energy groups 
(high energy level, mid-energy level, low energy level) 
using the following function:

(3)
c( j ) = -3.47 + 1.84CSIILow (j )

+9.99CSIlMid ( j )  + 0.0CSIIHigh ( j);

New _ feature( j )  = e~c(j)

In total, we have 18 perceptually-dependent features.

2.2 Evaluation of Performance

To test the performance, we used a multi-layer perceptron 
with 1 hidden layer (14 neurons) and 1 output layer (1
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neuron) (Demuth et al., 2008). We used two feature sets: 
conventional features used in environment classification, 
which include CGAV, CGFS, Pitchvar, Delpitch, Onstem, 
Onsetv, Onsetc, Onseth, Beat, Width, Symmetry, Skewness, 
Kurtosis, Lower Half, MLFS, M1, M2, M3 (Büchler, 2002) 
and the new features we described in the previous section. 
The inputs of the neural network were the two feature sets, 
which were evaluated separately, and the output was the 
volume gain in dB. Mean square error (MSE) between the 
volume gain at the output of the ANN and the volume gain 
that optimizes the speech intelligibility in a simulation of a 
hearing aid user with profound hearing loss. (This work was 
done in a simulator to mimic the interactions between the 
acoustic environment (sound files) and the user behavior 
(settings) (SPOT, 2009)). One hundred repetitions of the 
testing and training procedures were used to evaluate the 
performance.

The dataset for the experiments was generated as 
follows: We chose 12 30-sec pure speech samples and 
scaled them to 65 dB SPL. We generated the distorted files 
by adding white noise to pure speech at different SNR (from 
-10 to 15dB) and then scaled the files to SPL=65dB. 
Consequently, we had 312 audio files, from which we 
randomly chose 200 for training and another 100 for testing. 
The randomization was done for each of the 100 experiment 
repetitions.

3. RESULTS

Figure 1 shows the performance of the ANN with the 
conventional and new feature sets over 100 experiment 
repetitions. The average MSE obtained from the 
conventional features is 1.3 (dB based), while that obtained 
from the features is 1.4 (dB based). With this dataset, we 
find that the performance of the new features is very similar 
to the performance of the conventional features.

4. DISCUSSION

Both the new and conventional feature sets performed 
very well. However, it should be noted that the dataset in 
this study used only white noise and one SPL level. In the 
future, we will repeat the experiment using a much more 
comprehensive dataset that mixes different types of noise, 
signal, and SNR levels, and with different hearing loss 
profiles. We expect that the new feature set will perform 
better in such a challenging situation. One disadvantage of 
the new feature set is that it requires an estimate of the SNR 
(or SDR), which may be difficult to obtain at times. We will 
therefore further investigate features, such as the temporal 
“modulation level” (Büchler, 2005), that would provide 
alternative information for the SNR, without the need to 
estimate it.

Experiments

Figure. 1. The performance o f the conventional and new 
features.
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