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1. i n t r o d u c t i o n

Within the realm of therapeutic ultrasound, high 
intensity focused ultrasound (HIFU) is a rapidly expanding 
modality with applications in tumor necrosis, hemostasis 
and immunotherapy [l]. In this method of treatment highly 
focused ultrasound beams induce a rapid temperature rise 
around the focal spot due to conversion of acoustic energy 
to heat. Precise, well defined lesions can be created inside 
the tissue due to thermal coagulation. One advantage of 
HIFU over other similar treatment modalities is that it can 
be performed noninvasively. Selecting the right transducer 
and excitation parameters ensure that underlying tissue 
layers remain intact and tissue coagulation happen only 
around the focal spot.

Due to high acoustic pressure amplitude and intensity 
produced in focal region, a significant nonlinear distortion 
can be observed and thus an accurate propagation model 
needs to include the effect of nonlinearity [2] The model 
that we present here is based on a second-order operator 
splitting method where the acoustic field is propagated over 
incremental steps taking into account the effects of 
diffraction, nonlinearity and attenuation. This model is in 
essence a modified version of the KZK model where the 
parabolic diffraction term is replaced by a more accurate full 
diffraction term. This method was first introduced by 
Christopher et al. [3] for axi-symmetric sources and then 
improved by Tavakkoli et al. [4] via implementing larger 
propagation steps. It was then extended by Zemp et al. [5] to 
general non axi-symmetric problems using angular spectrum 
method.

In this work, w e’ll be further refining this method by 
introducing arbitrary source geometry and excitation 
definition, full diffraction solution, enhanced pressure 
calculation, and enhanced power deposition rate and 
temperature prediction capabilities. The result is a 
particularly useful tool in carrying out simulations of HIFU 
beams in tissue including temperature rise predictions. Since 
a typical HIFU power is usually delivered for the duration 
of a few seconds at frequencies of a few MHz, a CW 
simulation will be suitable.

2. METHOD

The KZK equation, which accounts for combined 
effects of diffraction, attenuation and nonlinearity in 
propagation o f acoustic beam, is given in Eq. ( l)  below:

I  = T  lv i ri d -dz 2 2 c i po> o

(l)

The first term on the right hand side is the diffraction term 
in parabolic approximation, the second term reflects the 
effect of attenuation and the third term is due to 
nonlinearity. The pressure field can be calculated over 

propagations planes in incremental steps by bringing to
dz

the left side as in Eq. (l). Also based on the above equation, 
the effects o f diffraction, attenuation and nonlinearity can be 
applied independently over propagation planes and then 
added together. This is often referred to as operator splitting 
method. In the second-order operator splitting method, a 
certain propagation scheme is maintained which enable 
larger propagation steps and faster computational time (see 
Fig l)  [4].
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Figure 1. Second-order
operator splitting method. 
D, N, and A represent 
operators for diffraction, 
nonlinearity and 
attenuation respectively.

Note that in this method, nonlinearity and attenuation are 
combined and propagated in one step. For a CW periodic 
waveform, the equations of propagations in each step shown 
in Figure l are presented here. For diffraction over the nth 
harmonic:

v z (x, y, z + Az) = 3 -lD {3 2D K  (x  y, z)}x H (kx, ky, Az)} (2)

where h  (kx, k y, Az) = eĴ k 2 “ (k|+ky) and k = 2K(nf0 )co and 

k x , k y are spatial frequency components. This will be 

repeated over N harmonics ( n =  l to N).

For nonlinearity and attenuation over the nth 
harmonic:

vn (z + Az) = vn (z ) + j  2 P (o Az
2c2

-a o ( nfo f  vnAz (3)

which will be repeated over N harmonics as well.
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In the enhanced version of the algorithm, user has the 
capability to define an arbitrary source geometry and input 
excitation. Since the propagation is done plane by plane, this 
will require an extra initial step to propagate the field from 
the surface of transducer to an initial plane. This step is 
done using the Rayleigh diffraction integral which assumes 
linear propagation from the source to the first plane. 
Another method to accomplish this is to propagate the beam 
from the source onto the initial plane by introducing simple 
phase shifts. Phase shift methods, however, produce 
inaccurate results in near field specially when the source 
surface is highly focused

The normal particle velocity is then calculated on equally 
spaced discrete points across the initial plane (intersection 
of solid lines in Fig. 2). The calculated values of vz is then 

expanded and assigned to the adjacent squares (dotted lines) 
to create a 2D array as shown in Fig. 2.
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Figure 2. 
Initial plane 
as a 2D array.

Since the value of vz across any given square (e.g. the 

shaded area shown in Fig. 2) is constant, it can be written in

compact form as v = v rect| —— xc) ——y^ ) | where
z o ^ w ’ w )

w is the width of the array element and (xc, y c ) is the

location of the element’s centre. The rect function has an 
analytical 2D Fourier transform as below:

^ 2 kx k e - J( kxxc +kyyc)
^ 2D(Vz) = vow sinc(w — , w^ - ) x e 

In 2n
(4)

Eq. 4 is then added up across all array elements to calculate 
the Fourier transform of the entire plane. The result is then 
feed into Eq. 2 to perform the first half step diffraction as 
illustrated in Fig. 1. After finishing diffraction substep, the 
result is then converted back to spatial domain using inverse 
Fourier transform and a nonlinear substep is subsequently 
performed using Eq. 3. The process is then repeated to 
propagate the field along the z direction.

3. RESULTS

The results obtained using our method were 
compared with other methods both in linear and nonlinear 
regimes. In overall, excellent agreements were observed.

Fig. 3 displays lateral pressure profiles for a concave 
spherical transducer with effective radius of curvature of 
160 mm and aperture diameter of 37.6 mm working at a 
frequency of 2.25 MHz and with a source pressure of 92.5 
KPa. Our results are in excellent agreement with those 
obtained by Averkiou et al. [6] using the KZK nonlinear 
model as shown in Fig. 3.
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Figure 3. Our simulation results (left column) vs. the KZK  
nonlinear model (solid and dashed lines represent 
measurement and simulation results, respectively), for the 
fundamental and first 3 harmonics.
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