1. INTRODUCTION

The results presented in this paper are part of a larger study that looks at articulatory constraints and its influence on the occurrence of gestural intrusion and reduction errors, as described in a study by Goldstein et al.5, where the feature or phoneme is the smallest unit of speech. The idea of the phoneme as the smallest unit of speech, however, is challenged by evidence from recent kinematic studies13. In these studies, speech errors, when studied at the level of articulatory gestures, frequently resulted into sub-phonemic speech errors. Most errors consisted of the activation of a gesture, not supposed to be involved in that particular sound production, accompanying the production of the actual target gesture. These unintended activations were often gradual in nature. In order to define a gradual error, Goldstein et al. compared the activation level of a gesture, for example tongue dorsum (TD) in alternating trials (e.g. cop cop top) with the mean activation level of the TD in non-alternating trials (see figure 1).

They did indicate that this method introduced the risk of comparing speech sequences with different coarticulatory properties, which could affect the analysis. This issue was reinforced in a recent study where it was found that higher production rates could be achieved in alternating trials, tapa, compared to non alternating trials, like tata, because of less energy consumption for the jaw4. This indeed suggests a different production mechanism for alternating trials compared to non alternating trials.

Another aspect that can make it difficult to separate normal amplitude variation from intrusion errors is that the amount of amplitude variability of the articulators differs across types of constrictions and contexts56, so different production constraints could play a role6. Finally, the articulators can be activated as a consequence of active control in forming a constriction gesture or they can move as a passive consequence because of the activation of another gesture5, in which the amount of passive movement is dependent on the context. Taken all this into account, it is important to determine what the co-articulatory properties of a C1VC C2VC sequence are and how these differ from non-alternating trials C1VC C1VC. This information will help to establish what an intrusion error is, because it allows us to determine the potential contributions of biomechanical constraints, coarticulatory influences, and normal variation7. The current study is a first attempt to investigate to what extent changes in movement amplitudes in alternating trials can be related to above mentioned factors. As a first approach, we will use correlations to determine the (in)dependence of gestures and their contributing articulators59.

2. METHOD

Speech errors were invoked by a repetitive speech task, comparable to the study described in Goldstein et al4. Two speech rates were employed, normal and fast, which were individually determined for each participant and controlled by metronome presentation. Movement data were recorded with the 3D EMA system10. The raw movement amplitudes were normalized such that the maximum amplitude of a constriction per trial was set to 100 % and the minimum constriction per trial was set to 0 %. This way it is possible to compare across trials and speakers. Maxima for TT and TD during each segment were automatically determined using a peak-picking algorithm. In this paper, data are presented for the bisyllable topcop in the normal speaking rate condition for 8 participants. For each separate trial, correlations were calculated between the normalized amplitude of the target gesture and that of the co-occurring non-target gesture in the bisyllables top cop, top top and cop cop. Furthermore, correlations between normalized amplitudes of the same gestures at the target and non-target location were used to determine co-articulatory influences across syllable positions. Finally, correlations are reported for the tongue tip and tongue dorsum after subtracting the contribution of the jaw to assess the latter influence on these measures. It was hypothesized that if the correlation between target and non-target is high, TT and TD are not moving independently from each other and biomechanical constraints play a role58. Moreover, it was hypothesized that if the gestures were highly dependent due to co-articulatory constraints, high
correlations for the same gesture in target and non-target positions should be found across words.

3. RESULTS AND DISCUSSION

The correlation values are shown in table 1a and b. No consistent significant positive correlations were found between target and non target gestures in the same syllable, except for one participant, C9.

![Table 1a & b. Correlations for TT and TD in both alternating (top) and non-alternating (bottom) trials. The last column shows the number of repetitions in a trial. The marked boxes are significant at p < 0.01.](image)

Figure 2 shows movement data for subjects C9 and C6 (who had very low correlations). The significant correlation between TT and TD in the word cop for C9 may indicate a passive movement of the TT during TD, due to the shared activation of a gesture in the target position doesn’t influence the activation of this gesture in a non target position and consequently doesn’t contribute to co-articulatory influences. Finally, there are large individual differences, as can be observed in table 1 and figure 2, and it is safe to assume that speakers use individual control strategies that may or may not result in a higher correlation between TT and TD.

In the non-alternating trials more significant correlations between TT and TD were found. The values for the non-alternating trials in the word top were slightly higher. However, the values didn’t show a consistent pattern, ruling out a biomechanical or co-articulatory constraint. Again, the jaw plays an important role in the higher correlation values. Once the jaw is left out, most of the significant values become insignificant. The fact that non alternating trials show a different pattern than the alternating trials means that these two conditions cannot be compared. Therefore, the use of non-alternating trials for the estimation of intrusion or reduction errors in alternating trials can affect the analysis and may cause an inaccurate determination of normal variation.

![Figure 2. C9 (left) and C6 (right). The y-axis shows normalized amplitude and the x-axis shows normalized time.](image)

REFERENCES


ACKNOWLEDGEMENTS

We would like to thank Dr. Aravind Namasivayam for his assistance in running the EMA sessions.