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1. i n t r o d u c t i o n

Evanescent liquid sound-pressure waves (i.e., standing 
waves, of limited spatial extension, with variable pressure 
and liquid-particle velocity but negligible density variation) 
appear to play a fairly important role in the human cochlea, 
e.g., in the generation process of spontaneous oto-acoustic 
emissions [Frosch (2010a, 2010b)]. These waves are stud­
ied, in the present contribution, with the help of underwater 
resonators. Mainly because of the kinetic energy in the 
generated evanescent waves, a tuning fork submerged in 
water oscillates at a frequency below 440 Hz (typically at 
~415 Hz, lower than 440 Hz by about a semitone). In the 
case of drinking glasses tapped with a spoon, the corre­
sponding frequency reduction is greater than an octave; see 
Table 1.

Case Condition f  [Hz] b [Eq.(11)]
A empty, on table ~1040 0
B full, on table ~590 2
C empty, submerged ~590 2

D full, submerged ~440 4

Table 1. Frequencies of a wineglass tapped with a spoon.

In Section 2 below, an idealized drinking glass is treated, 
namely a bottomless hollow cylinder as shown in Fig. 1.

Fig. 1. Left: oscillation of idealized tapped drinking glass. 
Right: linear oscillation of hollow cylinder or of tuning-fork 

prong.

2. METHODS

The true oscillation amplitude is much smaller than that 
shown in Fig. 1. In the corresponding small-displacement 
approximation [see e.g. Frosch (2010a)] the sound-pressure 
p  and the liquid-particle velocity v in a liquid of density p 
and of negligible compressibility and viscosity obey New­
ton’s second law in the form

p  • (dV / dt) = -Vp . (1)

and, in the present two-dimensional case, the Laplace equa­
tion,

A possible (standing-wave) solution forp  is:

p(x, y, t) = a p (x, y) • sin(® • t) , (3)

where the angular frequency a  = I n - f  is assumed to be 
constant. The real function ap ( x, y) in Eq. (3) must fulfil 
the Laplace equation (2).

Liquid sound-pressure and streamlines: In case B (see Ta­
ble 1), a solution compatible with Fig. 1 is obtained if 
a p ( x , y ) on the inside of the hollow cylinder is defined to 

be proportional to the real part of the analytic function 
F (nc) = nc2 of the complex number nc = x  + i ■ y  = r ■ ev<p :

ap = (ap0 / R 2) • (x 2 -  y  2) = ap0 ■ (r / R)2 • cos(2^). (4)

In Eq. (4), R is the inner radius of the hollow cylinder, ap0 
is a pressure constant, and r, y are plane polar coordinates. 
In Fig. 2 (diagram on the left), lines of constant a p are 
shown to be hyperbolae.
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Fig. 2. Left: constant-pressure lines,
: 0.0,+0.2,...,+1.0 , according to Eqs. (4) and (9). 

Right: streamlines according to Eqs. (6) and (10), for N  = 5.
ap /  ap0

Eqs. (1), (3), (4) and the definitions vx = 8Ç Id t , vy = 8 ^ / dt 

yield the following equations for the displacements of the 
liquid particles from their no-wave place x , y :

2ap0 ■y2ap0 ■ x 
# = —;-------- 7  • sin(®t); 77 = -

a>2 - p - R 2 ®2 - p - R 2
• sin(®t). (5)

The streamlines of this liquid motion can be found by set­
ting the imaginary part of the above-mentioned function 
F  (nc ) = nc 2 equal to a constant. The equation of stream­
line number n , where n = 1, 2, ... , N , is:

y  = +n • R /(2N  • x) . (6)

d 2 p  / cx 2 +5 2 p  / dy 2 = 0. (2)

These streamlines are hyperbolae, too; see Fig. 2 (diagram 
on the right). A liquid particle touching the wall [no-wave 
coordinates x = R • cos(^), y  = R ■ sin(^) ] has, according to 
Eq. (5), the following with-wave coordinates x w, y w :

x w = R ■ cos(^)-[1 + e - sin(®t)]; s = 2ap0 /(®2 • p - R 2) ; (7)
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y w = R • sin(^)• [1 - e - sin(®t)]. (8)

The contours in the xw-yw plane defined by Eqs. (7) and (8) 
at a t = 0,71 / 2, Ti, and 3 ^ /2  agree with the hollow-cylin- 
der shapes shown in Fig. 1 (left).

ln case C (Table 1), derivations like those just described, 
but based on the function F (nc ) = nc 2 of the number 
nc = x  + i ■ y  = r • e1'<p, yield the following equations:

ap = a p0'-(R'/ r ) 2 • cos(2^); R' = outer cylinder radius ; (9)

streamlines: r (^) = R'.yj(N / n) • sin(2^) ; 

see Fig. 2 (regions outside of cylinder).

(10)

Prediction o f  oscillation frequencies: If the potential energy 
during the oscillation shown in Fig. 1 (left) is assumed to be 
due to the deviation of the local curvature radii of the half­
thickness line from the no-wave radius Rav = (R + R ') /2 ,  
then the following theoretical oscillation frequency is ob­
tained [Frosch (2010a)]:

f th = [h / (n-Rav2)]-4 (Y • h )/(5h -pK + b ■ R m ■ p )  ; (11)

here, h = R '-R  = wall thickness, assumed to be << Rav; Y = 
elasticity modulus of wall; p w = density of wall; b = num­
ber depending on the considered case (see Table 1).

Oscillation o f  hollow cylinder according to Fig. 1 (right): In 
that case, the functions F (nc ) = nc and F (nc ) = nc yield 
straight equidistant lines on the inside and circles on the 
outside of the hollow cylinder; see Fig. 3 and Eqs (12),(13).

Streamlines (Fig. 3, right):

r < R : y  = ±R ■ n / N ; r > R' : r = R'-(N / n) • sin(^). (13)

The hollow cylinder and all liquid particles inside oscillate 
together in the x-direction.

The oscillation o f  an idealized tuning-fork prong is also 
illustrated by Fig. 1 (right) and Fig. 3. During a sinusoidal 
oscillation of frequency f  = a  /(2^) and amplitude s'-R' , 
the maximal kinetic energies of the prong (radius R ' , height 
H, density p prong ) and of the surrounding water are [Frosch 
(2010a)]:

Eprong = (^ /2 ) •R ' H  -Pprons
^ , 2•a .

= (it / 2) • R'4 H - p - s ' 2 -a2 .

(14)

(15)

Eqs. (14),(15) yield the following prediction for the tuning- 
fork frequency ratio Rf = f  (in air) / f  (under water):

R f  =■)!1+ p / p prong (16)

3. RESULTS

Insertion of the properties of the wineglass used for 
Table 1 into Eq. (11) yielded, for case A (i.e., b = 0), a 
prediction of f th = (0.70 + 0.10) kHz, lower than the ex­
perimental frequency of 1.04 kHz; such a discrepancy is 
expected, because the glass structure differs strongly from 
the assumed hollow cylinder (Fig. 1). Eq. (11) correctly 
predicts equal frequencies in cases B and C. Various hollow 
metal cylinders yielded good agreement of theory with 
experiment in case A [Frosch (2010a)]. A typical experi­
mental D/A frequency reduction factor was (0.52 + 0.01), 
larger than the factor of (0.42 + 0.01) predicted by Eq. (11). 
That discrepancy is attributed to the small height H  of the 
cylinder used (H / Rav = 1.03) ; true streamlines agreed with 
Fig. 2 near half-height only. Insertion of the steel density 
Pprong = 8.0 g / c m 3 into Eq. (16) yields a predicted fre­
quency ratio of R f  = 1.061, corresponding to one semitone, 
in agreement with observation.

Fig. 3. As Fig. 2, but for hollow-cylinder oscillation as shown in 
Fig. 1 (right).

Liquid-pressure amplitude (Fig. 3, left):

r < R : ap = a p0 ■ x / R; r > R': ap = ap0 '-(R' / r) • cos(^). (12)

4. CONCLUSION

The experimentally observed oscillation frequency re­
ductions caused by submerging resonators in water are 
consistent with the hypothesis that these reductions are 
predominantly due to the kinetic energy of the evanescent 
(standing) waves generated by the resonators.
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