Cochlear Evanescent Liquid Sound-Pressure W aves

During Spontaneous Oto-Acoustic Emissions

Reinhart Frosch
Sommerhaldenstrasse 5B, CH-5200 Brugg, Switzerland; reinifrosch@bluewin.ch
PSI (Paul Scherrer Institute), Villigen and ETH (Eidgenoessische Technische Hochschule), Zurich (retired)

1. introduction

In the diagram on the left in Fig. 1, the streamlines of
an evanescent (standing) liquid sound-pressure wave gener-
ated by a miniaturized and idealized underwater tuning-fork
prong are shown [Frosch (2010a, 2010b)]. The prong is
assumed to oscillate in the zr-direction. Liquid particles
having a no-wave location on one of these streamlines stay
on that line during their oscillation. In the diagram on the
right in Fig. 1, the corresponding lines of constant liquid
sound-pressure amplitude are displayed; see Section 2.1.

Figure 1. Underwater mini-tuning-fork prong oscillating in the
Indirection. Left: streamlines. Right: lines of constant liquid
sound-pressure amplitude.

In this study it is assumed that spontaneous oto-acoustic
emissions (SOAEs) from the human inner ear [e.g., Frosch
(2010a)] are generated, in a feedback process, by outer-hair-
cell-driven localized oscillations of the basilar membrane
(BM), and it is shown that a corresponding liquid motion
above and below the BM of an idealized cochlear box
model [cubic channel, x-independent properties] can be
found by a superposition of three standing waves similar to
that shown in Fig. 1, generated by a prong centred at xr=0
and by two prongs at xr = +a, where typically a = 0.01 mm.
It is assumed that at time t = T/4 (where T = oscillation
period) the central prong is at zr = +25 and the two lateral
prongs are at zr = -¢>; typically, 6 =0.1 “m.

2. methods and results

The liquid-particle oscillation amplitudes are small
compared to the half-pressure distance of ~0.1 mm visible
in Fig. 1. In the corresponding small-displacement approxi-
mation [see e.g. Frosch (2010a)] the sound-pressure p and
the liquid-particle velocity v in a liquid of density p and of
negligible compressibility and viscosity obey Newton’s
second law in the form
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p- (dv/dt) =-vp . (9

and, in the present two-dimensional case, the Laplace equa-
tion,

d2p/dx2+d2p/dy2=0. 2)
A possible (standing-wave) solution forp is:
p(x,y,t) =ap(x,y) ssin(® ), ®)

where the angular frequency o =2n-f is assumed to be
constant. The real function ap(x,y) in Eq. (3) must fulfil
the Laplace equation (2).

2.1. Oscillation of a “miniprong” according to Fig. 1

As explained e.g. in Frosch (2010b), the real and
imaginary parts of the function F(nc)=nc_1 (where nc=
xr+iuazr) yield the circular streamlines and lines of con-
stant sound-pressure amplitude shown in Fig. 1 Stream-
lines:

r =R 1(N /n) scos(®) ; 4
n =0, 1, £2, ... , =N is the running number of the stream-
lines; in Fig. 1N =5 was chosen; R = 0.1 mm is the prong
radius; r and y are plane polar coordinates:

r=ifx~"+2zZ";tan(®) = zr/xr. (5)

Lines of constant sound-pressure amplitude:
r=Ru(apo/ap)esin(®) . (6)
In Eq. (6), apdis a pressure constant, and ap is defined by

Eqg. (3). The lines of constant liquid sound-pressure ampli-
tude in Fig. 1are forap/ ap0=0.0, £0.2, £0.4, ... , £1.0.

2.2. Localized oscillation of the basilar membrane

The superposition described in Section 1 yields the fol-
lowing liquid sound-pressure amplitude [Frosch (2011)]:

ap - Razr 0.5R ezr
T = - H ! F--5-3»
gpo xr2 +'zr2 (xr - ai( ﬂizr 2 /(xr|+ ai( 2+2r'2 W
The corresponding streamlines are defined as follows:
05R ¢(xr-a) 0.5Re(xr+a)

2 8
(xr-a) +zr

gen R uxr

N  xr +zr (Xf+a)\2 +%r

the number q in Eg. (8) is the maximum of the expression
on the right-hand side for zr =R ; forR =0.1 mm and a =
0.01 mm one finds g = 0.007224; that maximum is located
at xr =41.7"m ; see Fig. 3.
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Figure 2. Constant-pressure lines, ap/apmin= 0.8, 0.6, 0.4, 0.2,

0.0, -0.2, according to Eq. (7); apminis the value of a, atxr= 0,
Z=R =0.1mm; the BMisatzr=R
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Figure 3. Streamlines according to Eq. (8), for N = 5.

The BM is assumed to have a negligible thickness and to be
located at zr =R =0.1mm In the case of both Fig. 2 and
Fig. 3, the patterns at zr <R (below the BM) and at xr< 0
are mirror images of those shown.
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Figure 4. Shape of the basilar membrane at time t = 774, ac-
cording to Egs. (1,3,7); zr=R = 100 ~m; ap0= 1 Pa; oscillation
frequencyf = 1 kHz; liquid density 1 g/cm3

The amplitudes of the z-components C = a”- sin(®t) of the
displacements of the liquid particles in Figs. 2 and 3 from
their no-wave locations xr, zr, according to Eqgs. (1), (3), and
(7), are given by Eq. (25) of Frosch (2011). The correspond-
ing shape ofthe BM at time t=T/4 is shown in Fig. 4.

3. DISCUSSION AND CONCLUSIONS

The evanescent (standing) liquid sound-pressure wave
described in Section 2.2 fulfils the Laplace equation. It is
however incompatible with Newton’s second law (force =
mass X acceleration) applied to the friction-less passive
basilar-membrane (BM) elements of a cochlear box model
[Frosch (2010a)] with x-independent BM stiffness S and
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BM surface mass density M, and with negligible direct me-
chanical coupling of the BM elements. That disagreement
can be corrected by introduction of a periodic force exerted
on the BM by active outer hair cells (OHCs). In the present
frictionless case, the OHC force must be proportional to
sin(®t). In Fig. 5, the amplitude of the required force on a
BM element of 5x300"m2, centred at xr, is shown versus
xr for three different values of the assumed BM stiffness.
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Figure 5. Active-outer-hair-cell force amplitude required by
Newton’s law (see text). Curves starting at-16.4,
-12.0, and -7.6 pN are for S/ Sres= 1.3, 1.4, and 15.

The quantity Sres in the caption of Fig. 5 is the without-
liqguid BM resonance stiffness, Sres =m21M ; e.g., if S =
1.4Sres (solid curve in Fig. 5), then for the parameters in the
caption of Fig. 4 and for M =0.1kg/m2, t = T/4, xr= 0,
the forces due to the BM stiffness, the liquid-pressure dif-
ference across the BM, and the active OHCs amount to
-62.0, +29.7, and -12.0 pN. The resultant force, -44.3 pN,
agrees with the downwards acceleration of the considered
BM element. If both the liquid and the OHC force were
removed, then the BM free-oscillation frequency in that box
model with stiffness S =1.4Sreswould be VIT e1kHz =
1.18 kHz, higher than 1kHz by about 0.24 octave.

In the real cochlea, “slow” travelling surface waves of given
frequency [Frosch (2010a)] are impossible at the without-
liquid BM resonance place for that frequency, but are possi-
ble at the corresponding with-liquid resonance place, which
is more basal by typically 0.24 octave distance, i.e., by
about 1.1 mm. From that place, the with-liquid BM oscilla-
tions conjectured to occur during spontaneous oto-acoustic
emissions could be efficiently carried, by such slow co-
chlear travelling waves, to the cochlear base (oval window,
stapes) and then propagate to the ear canal.
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