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ABSTRACT

Accurate simulation of an intensive ultrasound beam requires taking nonlinear propagation effects into 
account. A notable example in the field of biomedical ultrasound where the effect of nonlinearity may play 
a significant role is the high intensity focused ultrasound (HIFU) as a non-invasive energy-based treatment 
modality. In this work, a 3D numerical model to simulate nonlinear propagation of continuous wave 
ultrasound beams in dissipative homogeneous tissue-like media is presented. The model implements a 
second-order operator splitting method in which the effects of diffraction, nonlinearity and attenuation are 
propagated over incremental steps. The model makes use of an arbitrary 3D source geometry definition 
method and a non axi-symmetric propagation scheme, which leads to a 3D solution to the resulting 
nonlinear ultrasound field. This work builds on methods developed by Tavakkoli et al. (1998) and Zemp et 
al. (2003) and offers an efficient way to calculate nonlinear field of continuous wave ultrasound sources. 
The proposed model is a particularly useful computational tool in carrying out simulations of high intensity 
focused ultrasound beams in soft tissue where the effects of nonlinearity, diffraction, and attenuation are 
important. The model was validated through comparisons with other established linear and nonlinear 
numerical models as well as published experimental data.

RÉSUMÉ

La simulation précise d'un faisceau d'ultrasons intensive nécessite de prendre des effets de propagation non- 
linéaire en compte. Un exemple notable dans le domaine d'ultrasons biomédicale où l'effet de la non- 
linéarité peut jouer un rôle important est des ultrasons focalisés de haute intensité (HIFU) comme un 
modalité de traitement fondées sur l'énergie non-invasive. Dans ce travail, un modèle numérique 3D pour 
simuler la propagation non-linéaire des ultrasons à ondes continues dans un milieu dissipatif et homogène 
similaire au tissue est présenté. Le modèle met en œuvre une méthode de deuxième ordre d'opérateur dans 
lequel les effets de diffraction, la non-linéarité et de l'atténuation sont propagées de façon additive. Le 
modèle utilise une méthode arbitraire de définition de source géométrie 3D et un régime de propagation 
non-axisymétriques, ce qui conduit à une solution 3D au domaine d'ultrasons non-linéaire qui en résulte. Ce 
travail s'appuie sur des méthodes développées par Tavakkoli et al. (1998) et Zemp et al. (2003) qui offre un 
moyen efficace de calculer le champ non-linéaire des ondes ultrasons continue. Le modèle proposé est un 
outil particulièrement utile dans l'exercice des simulations numérique des faisceaux ultrasonores focalisés 
de haute intensité dans les tissus où les effets de la non-linéarité, de diffraction et d'atténuation sont 
importantes. Le modèle a été validé par des comparaisons avec d'autres établis linéaires et non-linéaires des 
modèles numériques ainsi que les données expérimentales publiées.

1. Introduction

Propagation of ultrasound is inherently a nonlinear process 
(Hamilton and Blackstock 1998). Nonlinear effects of 
ultrasound propagation such as waveform distortion and 
generation of harmonics can be observed in many 
biomedical applications of ultrasound (Carstensen and 
Bacon 1998). Two notable examples where the effects of

nonlinear beam propagation play major roles in bioeffects of 
ultrasound are high intensity focused ultrasound (HIFU) and 
lithotripsy where intensive and focused ultrasound beams 
are used for various tissue treatments. Linear equations can 
be obtained assuming small signal approximations around 
equilibrium values of pressure and density. As the acoustic 
pressure and intensity levels are increased within the 
medium, more deviation from a linear model is expected
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(Baker 1998). Analytical solutions to the problem of finite- 
amplitude propagation of acoustic beam are generally 
limited to simple geometries under specific simplifying 
conditions. Several numerical methods have been developed 
over the years to account for nonlinear propagation of 
ultrasound beams in various media (Hamilton and 
Blackstock 1998). These methods are typically focused on 
finding numerical solutions to appropriate partial 
differential equations (Ystad and Berntsen 1996, Khokhlova 
et al. 2001, Kamakura et al. 2000). One of the equations 
which has been widely used to describe finite-amplitude 
propagation of the acoustic beam is the KZK (Khokhlov, 
Kuznetsov, Zabolotskaya) nonlinear wave equation 
(Kuznetsov 1971). It accounts for combined effects of 
diffraction, nonlinearity and absorption and has been 
validated through comparison with experiments for various 
source geometries (Baker et al. 1988, Averkiou and 
Hamilton 1995, Baker et al. 1995). The KZK equation, 
however, is only valid in directional beams where paraxial 
assumption holds true. As a result it fails to be valid close to 
the source surface, far off the propagation axis, in highly 
focused sources or when the source dimensions approach 
one wavelength (Duck 2002). To overcome these 
limitations, a more general nonlinear propagation model 
which accounts for full diffraction was proposed 
(Christopher and Parker 1991, Tavakkoli et al. 1998). In this 
model the propagation of the acoustic field is carried out 
using a method of fractional-steps. Then, Zemp et al. (2003) 
extended the works of Christopher and Parker and 
Tavakkoli et al. to simulate nonlinear propagation of array 
transducers in dissipative homogeneous tissue-like media. 
In this work we extend the work of Zemp et al. to general 
3D transducer geometries which are used in simulations of 
high intensity focused ultrasound beams.

2. Materials and Methods

Method o f fractional steps

In our model the field is calculated plane by plane in a 
marching scheme. Consider a partial differential equation in 
the form of an evolution equation as:

f ^ L , „ { / }  (1)

where/ is a function of x,y,z,t and L ({/}  is an operator 

which only acts on x,y,t dimensions. The term /  / dz on the 

left side of the equation enables plane by plane calculations 
of the function /  in incremental steps along the z axis 
provided the values of /  is known on an initial plane (e.g. at 
z = 0). This method is commonly referred to as method of 
fractional steps (Ames 1992). The KZK equation can also 
be written in a form similar to Eq. (1) as shown below 
(Cobbold 2007, pp. 254):

1 4 d2 p dp1 
Vb +~M' It“T +3 J o t  o t

(2)
2 2capo

The first term in the right hand side of Eq. (2) represents 
diffraction, the second term accounts for attenuation and the

third term appears because of nonlinearity. In our model, 
however, as will be explained in the next section, the 
diffraction operator is different from what is used in the 
KZK equation.
As it was suggested by Tavakkoli et al. (1998), the right 
hand side of Eq. (2) can be divided into three parts and 
rewritten in a general evolution equation form as below:

d- P  = Lfl {p } + L J  p } + Ln {p}
oz

(3)

where l  {p} = V v 2 p d r  is the diffraction operator,
2 J-<x>

La{p}=
2ccA

+ 4  ■■ 15 p  is the attenuation operator
3- |A*B + 3 ) d r2

andL N{/>} = ^ 1 represents the operator of
N 2c03P0 I dT J

nonlinearity. Eq. (3) demonstrates how operators of 
diffraction, nonlinearity and attenuation can be applied 
independently and then the results are added together. This 
is referred to as operator splitting method and has been 
schematically illustrated in Fig. 1(a). In our model, 
however, we have made use of a second-order operator- 
splitting method which follows a certain propagation 
scheme as illustrated in Fig. 1(b). Using the second-order 
operator splitting method would enable using larger 
propagation steps while maintaining the same degree of 
accuracy (Tavakkoli et al. 1998).

Diffraction operator

Using the second-order operator splitting method, the first 
step in propagating the field from the initial plane involves a 
half step diffractive propagation as shown in Fig. 1(b). The 
main difference between this method and implementation of 
the KZK equation lies in the diffraction step. The diffraction

term of J r v 2p d r  in the right hand side of the KZK Eq.

(2) is only an approximation based on paraxial assumption. 
A more general term for diffraction should account for 
pressure distribution over the entire propagation plane and 
not only for the transversal Laplacian of pressure at each 
point. In this method the diffraction term in the KZK 
equation is replaced by a full diffraction solution. This is 
achieved by an angular spectrum approach which enables 
plane to plane diffractive propagation. If two planes are 
perpendicular to the z axis and Az is the distance between 
them, we have (Cobbold 2007 pp.125, Zemp et al. 2003): 

s(x, y, z + Az ) = 3 ^  {^2D {s(x, y, z)}x H (kx, ky, Az)} (4)

where the transfer function h (kx,ky, Az) = eJAẑ k2~(kx +ky), 

k = 2n(n/o )/ Co and n is the harmonic number. The term 

s(x, y, z) in Eq. (4) could be any field parameter such as 

pressure, normal particle velocity or velocity potential. In 
our model, we choose to propagate the normal particle 
velocity (i.e. s( x, y, z) = vz (x, y, z)), since in our model the
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nonlinearity and attenuation operator acts on the normal 
particle velocity as discussed below.

Figure 1. Operator splitting methods. (a) First order, and 
(b) second order.

Nonlinearity and attenuation operators

After finishing with the diffractive sub-step, the results are 
converted to the spatial domain and a nonlinearity and 
attenuation sub-step is subsequently followed as shown in 
Fig. 1(b). Combined effects of nonlinearity and attenuation 
are applied in one step using the solution obtained by 
Harran and Cook (Haran and Cook 1983) for nonlinear 
propagation of progressive plane waves in lossy media. In 
this method a finite number of harmonics (N) is captured at 
each plane and normal particle velocity at z + Az is obtained 
from the harmonic values of the preceding plane as below:

" ”_1 n "I (5)
^ , ‘vivn-i + ^ f---- * ~ A_n (z + Az) = vn (. X . 2 n 0 f o . 

’) + } — Az
2c2

~ a o ( n f o f V n A z

where n is the harmonic number. Eq. (5) has to be repeated 
N  times to calculate all harmonics for each propagation step.

3D source definition

The first step in calculating the nonlinear acoustic field is to 
propagate the field from the surface of the transducer to a 
plane close-by which is called the initial plane. The reason 
behind this is that the method of fractional steps and the 
angular spectrum technique are both based on plane by 
plane propagation while the source geometry in general can 
presume any non-planar shape. The first part of the problem 
is to introduce a method to fully describe any source

geometry and the second part is to introduce a method to 
capture the field of an arbitrarily shaped transducer. The 
first part is handled though introduction of an elements 
matrix and the second part is solved by using the Rayleigh 
diffraction integral on the surface of the source. To be able 
to define any source geometry and excitation, the source is 
broken into an array of small rectangular elements. The 
elements specifications (location and excitation) are then 
saved into a 16*N matrix which we refer to as the Source 
Elements Matrix. N is the total number of small rectangular 
surface elements and 16 is the number of attributes required 
to fully describe a surface element (Mashouf 2009).

Full diffraction solution

Since our method accounts for full diffraction, it is desirable 
that the first propagation step would also include full 
diffraction calculation. Furthermore it is important to have 
the field calculated on the initial plane as accurate as 
possible in order to minimize the effect of error propagation 
due to plane by plane propagation scheme in the method of 
fractional steps. In light of this, the field on the initial plane 
is calculated using the Rayleigh diffraction formula which is 
a surface integral over the entire source area as shown in 
Fig. 2(a). Alternatively one can use a phase shift method to 
estimate the field on the initial plane based on the value of 
the closest surface element by applying phase and amplitude 
correction factors as shown in Fig. 2(b). This method has 
been widely used for simulations of a spherically concaved 
transducer (Averkiou and Hamilton 1995, Christopher and 
Parker 1991, Filonenko and Khokhlova 2001). Although it 
is computationally less intensive, this method is an 
approximate solution and could yield in significant errors 
for highly focused sources (Mashouf 2009). This can be 
explained by noting that the field at any point on the initial 
plane is a sum of contributions of all surface elements and 
cannot be simply presented by a phase and/or amplitude 
correction to the corresponding value at the source surface. 
Once the geometry and excitation of the source are defined, 
the pressure is calculated at discrete points on the initial 
plane (e.g. point A in Fig. 2-a) by making use of the 
Rayleigh diffraction integral over the entire surface of the 
source as below (Ocheltree and Frizzell 1989):

i n n  -  ^ ~ ( a + j  )r / / r \

Pa = ^ \V „ ~ ------- d S (6)
X s r

where r is the distance between the field point and an 
infinitesimal surface element, Vn is the normal velocity 
phasor at the element surface and dS is the area of the 
infinitesimal surface element.
Since in our model, the source is defined by a set of small 
rectangular elements, Eq. (6) is realized as below:

n c N e-(a+jt)ii
p  = j  ̂  Y y j- —  X w. l (7)

^  i=1 r
where N  is the total number of surface elements, rt is the

distance between the field point and the center of the ith 
surface element, and w and l are the width and the length of 
each surface element respectively.

=1
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Figure 2. Schematic demonstration of the ultrasound field 
calculation over an initial plane by (a) implementing the 

Rayleigh diffraction integral, (b) introducing phase/amplitude 
correction factors. In method (a) contributions of all surface 
elements are taken into account while in method (b) only the 

value of the closest horizontally located element is used to 
estimate the field by applying a complex correction factor

(Ci, C )

Field propagation

Field propagation is done in incremental steps following a 
second-order operator splitting method as described earlier. 
The first step involves a half step diffractive propagation as 
illustrated in Fig. 1(b). Each harmonic is propagated 
separately by applying Eq. (4) as below:

3 2D {vz (x, y , z + (Az / 2 ))}= 3 2D {vz (x, y , z)}x H  (k x, k y,( Az / 2}) (8)

where the transfer function j ( A z / 2 ) ^  k 2-(k2 +ky)
H(kx, ky, Az / 2) -

and Az is the size of each propagation step. The 2D Fourier 
transform of normal particle velocity on the initial plane is 
can be obtained as (Mashouf 2009):

,(vz(x,y ,z0))= w2sinc(w-k^ , w ^-)  x Y v le~JikxXc‘ 
2ft 2ft 1 (9)

where N  is the total number of the array elements. 
Accordingly the right hand side of Eq. (8) can be obtained 
by multiplying Eq. (9) to the transfer function H.
After finishing the diffraction substep, the result is 
converted back to spatial domain using inverse 2D Fourier 
transform and a nonlinear substep is subsequently followed

as shown in Fig. 1(a). The process is then repeated to 
propagate the field along the z direction.

Spatial sampling

Since performing the 2D inverse Fourier transform of Eq. 
(8) is analytically not possible, the right hand side of this 
equation is discretized along kx and ky dimensions and an

inverse discrete Fourier transform is used instead. The 
sampling of kx and ky dimensions should be performed to

capture the field variations adequately. If Ax is the desired 
sampling interval on a propagation plane over the x 
dimension, the maximum spatial frequency component of 
the 2D discrete Fourier transform of the field over the k x

dimension is given by:

k.
ft

Ax
(10)

As mentioned before, the first propagation step involves a 
diffractive sub-step which is calculated as below (see Eqs. 
(8) and (9)):
vz (x, y, z0 + (Az / 2)) =

{
k  k  n  ,, 1

w2s in c (w - ^ , w -Z-)  x Ÿ  vie^j{kxXci+kyyci) x H  (kx, k  , (A z /2 )U  (11) 
2ft 2ft i=1 J

Studying a sinc( x) function shows that at around x = 5, its

amplitude has already reduced to about 5% of the
maximum. Hence, the values of kx in Eq. (11) shouldy w---  1 v '

2n
extend beyond 5 in order for variations to be adequately 
captured. In other words: 

k . _ „ _  (12)
2n

-> 5

Substituting kx_maxform Eq. (10) into Eq. (12), the following

criteria for the sampling interval is obtained:
Ax < w/10 (13)
Similar criterion applies for sampling interval along y 
direction. In other words the spatial sampling on the 
propagation plane should be at least ten times finer than that 
o f the initial plane.

Enhanced pressure formulation

In the methodology described above, the values of normal 
particle velocity (vz) are calculated on each propagation 
plane. Other acoustic parameters such as pressure should be 
derived from the calculated values of normal particle 
velocity. A simple method to convert normal particle 
velocity to pressure, is through the linear impedance relation 
as below:

P(x y ) = p„c0 -Vz y) (14)

This formula, however, is only accurate for a plane wave 
travelling along the z  axis in an inviscid medium. As we will 
see later, Eq. (14) can be significantly in error in nonplanar 
fields. A more general formula which is valid in any field 
configuration (such as spherical, cylindrical or focused 
beams) is expressed as below (Liu and Waag 1997):
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P (x, y) = 3 ^  -j 3 2d ( V ( x, y ) \ PoCok (15)

^  2 -  (kX2 + k2y ) j

Eq. (15), however, includes a singularity in spatial 
frequency at a circle with radius of k which is centered at 
origin and known as radiation circle. As a result, numerical 
methods to calculate the inverse Fourier transform of Eq. 
(15) may either fail or generate considerable amount of 
computational noise in the output. Eq. (15) assumes 
propagation in a lossless medium. In the presence of viscous 
loss, Eq. (15) takes the following form (see Mashouf (2009) 
for the full derivation):

1 (16)PoCok

k ^ k  2 -  (kX + ky2)

1 -  j ( 2 a  /  k )

In a lossless medium, k 2 = k 2 and Eq. (16) reduces to Eq. 

(15) as expected. It is interesting to note that in the presence 
of viscous loss, the transfer function of Eq. (16) will no 
longer contain a singularity. Since in a physical medium 
there’s always some loss, the problem of singularity can 
therefore be avoided by using Eq. (16).
It can be also shown that in case of a plane wave 
propagating in an inviscid medium Eq. (16) reduces to the 
impedance relation of Eq. (14) as expected. In a plane wave 
propagating along the z direction, normal particle velocity 
phasor is a constant anywhere on a plane perpendicular to
the z-axis. In other words Vz ( - ,  y ) = Vo where V is a constant.

As a result 2D Fourier transform of vz (x, y) is a Dirac 
impulse function as below:

32D iV.z (x, y )}= Vo X S( fx, fy ) = Vo X ) = Vo X 4x2S(kz,kr ) ( 17)2n 2n
Substituting Eq. (17) into Eq. (16) and noting that the 
8{kx ,  k y )  is zero everywhere except at k x = k y = 0, results in:

' (18)
P (x ,y ) =  \ V0 x 4 ^ 2 ^ ( k x , k y) x -

PoCok

W k 2 -  (0 + 0)

or

^ y ) = \ v a X4 n 15 (k j,k y) j (19)

Since in an inviscid medium k = k , Eq. (19) can be 

simplified further as below:

^ y ) = PoCo%tn̂ Vo x 4^2£(kx,kr )} (20)
Conversely, the inverse 2D Fourier transform of a delta 
function is a constant in space. In other words:

^  y) = 3^  x S( f x, f y )}=p0Co xVa (21)
which is the well-known impedance relation.
Eq. (16) enables conversion of particle velocity normal to a 
plane to the values for pressure on the same plane. Since in 
our method the values of normal particle velocity are only 
known over the extent of propagation planes, Eq. (16) 
serves as an ideal tool to accomplish conversion to the 
values of pressure.

We refer to pressure obtained using Eq. (16) as “enhanced 
pressure” formulation to make distinction from the 
impedance pressure formulation expressed by Eq. (14). In 
what follows we demonstrate how impedance pressure of 
Eq. (14) can be significantly in error in non-planar fields.

Field o f a concave spherical source

Another example of a non-planar acoustic field is the field 
of a concave spherical source. It is important to investigate 
the degree of error in the plane wave approximation used in 
this geometry that is frequently used in many biomedical 
applications including HIFU. We study three transducers 
with different F  numbers to demonstrate how the source 
curvature affects the results. Focal distance of all 
transducers are equal (20mm) but they have different 
diameter of apertures as shown in Figs. 3(a). As a result, the 
associated F  numbers of the transducers will be 2 and 1. 
Figs. 3(b) and (c) display the lateral pressure profiles on the 
focal plane of each transducer. Each graph shows two 
pressure profiles which have been obtained using different 
methods namely the Rayleigh integral and the impedance 
formula. The Rayleigh integral was calculated using Eq. (7), 
and the linear impedance formula makes use of the plane 
wave approximation given by Eq. (14) as described before. 
As it can be seen in Fig. 3, the difference between the actual 
pressure and the plane wave approximation rises as the 
source curvature increases (or F  number decreases). This is 
expected as deviation from a plane wave is more 
pronounced in the case of a highly focused source versus a 
slightly focused source. The second point to note about 
pressure profiles presented in Fig. 3, is that the actual 
pressure is almost always higher than what is predicted by 
an impedance approximation. This can be explained by the 
fact that in the linear impedance formula, only the normal 
component of particle velocity (vz) is used to estimate the 
pressure, but in general non-planar fields, lateral 
components of particle velocity (i.e. vx, vy) are also present 
and could have substantial amplitudes. Lateral components 
of the particle velocity would also contribute to creating a 
pressure build up.

3. Results

The KZK equation has been widely accepted as a gold- 
standard model to simulate nonlinear ultrasound 
propagation. In order to validate our methodology and test 
the performance of our model in nonlinear mode, we 
compared the results obtained using our model with 
published KZK simulations and experimental results. In 
their 1995 paper, Averkiou and Hamilton (Averkiou and 
Hamilton 1995) presented results of the KZK simulations 
for a concaved spherical source in water and compared them 
with experimental data. In order to do a comparative study, 
we implemented identical source and medium parameters 
(as used by Averkiou and Hamilton) in our model. The 
parameters used in this simulation include: Radius of

2k
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Figure 3. (a) Concentric concaved spherical sources with 
different diameters o f aperture (D) to study the effect of 
curvature in calculation o f pressure. Higher values o f D, 

corresponds to higher degrees of focusing. Comparison of 
impedance pressure versus actual pressure at f0 = 1 MHz on 
the focal plane o f a (b) moderately focused and (c) a highly 

focused source.

curvature (R) = 160 mm, aperture diameter (D) = 37.6 mm, 
source pressure (Po) = 92.5 kPa, source frequency (fO) = 2.25 
MHz, attenuation coefficient at 2.25MHz(«) = 0.1645 

Np/m, and coefficient of nonlinearity (^)=  3.5.

Fig. 4 below shows the lateral pressure profiles for 
fundamental and three harmonics at pre-focal (z = 100 mm), 
focal (z = 160 mm), and post-focal (z = 250 mm) planes. 
The results of Averkiou and Hamilton include both 
experiment (solid line) and theoretical (dotted line) results. 
As it can be seen in Fig. 4, very good agreement exists 
between our results and those obtained from the KZK 
nonlinear model.

(top panel: pre-focal, middle panel: focal plane, bottom panel: 
post-focal). Left column: Our model, Right column: 

Experiment (solid line) and KZK results (dotted line) by 
Averkiou and Hamilton, 1995.

4. Discussions and Conclusions

In this work a continuous wave nonlinear propagation 
model based on a second-order operator splitting method 
was presented. The model was made more versatile by 
introducing a 3D arbitrary source definition capability and 
by converting the values of normal particle velocity to 
pressure across the propagation plane using an enhanced 
formula in dissipative media. Using our numerical model, 
one can define any 3D source geometry. The amplitude and 
phase of the normal particle velocity can also be arbitrarily 
defined and varied across the source surface as appropriate. 
This would enable simulations of transducers of arbitrary 
geometries and excitations. The full diffraction and 
enhanced pressure formula enable calculation of the 
acoustic pressure in a given plane in terms of the normal 
particle velocity in the same plane (see Eq. (16)). We 
demonstrated that for a concave spherical source with 
dimensions and excitation frequencies around those of 
interest in biomedical ultrasound, the impedance relation 
based on the plane wave approximation yields substantially 
lower pressure values. A particular area of interest is the 
focal region of focused sources where a significant 
difference between the two methods is observed. The 
difference in predicted pressure leads to even more disparity 
in intensity values as the intensity is related to pressure by 
the power of two in nonlinear regime according to the

approximate formula r n = Y  | P  |2  which simply
to ta l  U /  ;  n /  j ^  *

n=1 n=1 2 H 0 C0

states that the total intensity in a nonlinear field is equal to
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the sum of intensities o f each harmonic (Bailey et al. 2003). 
Moreover, since the intensity values are directly 
proportional to heat generation rate, according to the

approximate formula q  n y  2a I (Bailey et al. 2003),
z ï t o ta l  n n

n=1

this will in turn affects temperature predictions as well. 
Accurate temperature calculations are highly demanded in 
areas such as ultrasound hyperthermia and/or high intensity 
focused ultrasound (HIFU) where focused nonlinear 
ultrasound beams are used to induce controlled tissue 
temperature elevation. Through implementation of the 
enhanced pressure formula we managed to resolve the 
singularity issue in the transfer function of normal particle 
velocity to pressure by making use of k or a complex wave 

number. By using a complex wave number, the singularity 
in Eq. (15) is eliminated and calculating the inverse 2D 
Fourier transform becomes a well-posed problem. 
Alternatively this singularity can be avoided by 
implementing a narrow band-stop filter around the 
singularity. However the complex wave number method 
offers benefits in terms of calculation accuracy and 
efficiency over the filtering method (Mashouf 2009).
We verified our results by comparison to simulation and 
experimental data available in the literature. A great 
agreement observed both in linear and nonlinear regimes. 
The next steps in this work include expansion of the current 
model to include temperature rise predictions, multilayer 
media and pulse mode propagation. The temperature 
simulations are carried out by calculating the heat 
deposition rate within the medium and coupling with an 
enhanced bio-heat transfer equation. M ultilayer medium can 
be introduced into the model by changing the medium 
properties in each propagation step accordingly.
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