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ABSTRACT

This paper develops a new approach to simultaneous localization of an unknown number of ocean 
acoustic sources when properties of the environment are poorly known, based on minimizing the Bayesian 
information criterion (BIC) over source and environmental parameters. A Bayesian formulation is 
developed in which water-column and seabed parameters, noise statistics, and the number, locations, 
and complex strengths (amplitudes and phases) of multiple sources are considered unknown random 
variables constrained by acoustic data and prior information. The BIC, which balances data misfit 
with a penalty for extraneous parameters, is minimized using hybrid optimization (adaptive simplex 
simulated annealing) over environmental parameters and Gibbs sampling over source locations. Closed- 
form maximum-likelihood expressions for source strength and noise variance at each frequency allow 
these parameters to be sampled implicitly, substantially reducing the dimensionality of the inversion. 
Gibbs sampling and the implicit formulation provide an efficient scheme for adding and deleting sources 
during the optimization. A simulated example is presented which considers localizing a quiet submerged 
source in the presence of two loud interfering sources in a poorly-known shallow-water environment.

SOMMAIRE

Cet article developpe une nouvelle approche de localisation simultanee d ’un nombre inconnu de sources 
acoustiques sous-marine lorsque les proprietes de l’environnement de l’ocean sont mal connues, fondee 
sur la minimisation du Critere d ’information Baysien (CIB) sur la source et les parametres environ­
nementaux. Une formulation Bayesienne est developpe pour que les parametres de la colonne d ’eau et 
des fonds marins, les statistiques du bruit, et le nombre, lieux et points forts complexes (amplitude et 
phase) de multiples sources sont consideré comme variables inconnues arato ires forcee par les donnees 
acoustiques et information préexistante. Le CIB, qui stabilise les résultats inadapte avec une penalite 
pour les parametres errones, est minimise en utilisant l ’optimisation adaptative hybrides simulation 
d ’annelage adaptif simplex pour les parametres environnementaux et l ’echantillonnage de Gibbs pour 
les endroits de source. Des expressions de vraisemblance-maximal pour les intensites de source et la 
variance de bruit à chaque frequence permet les parametres à etre echantillonnes implicitement, en 
réduisant la dimensionnalite de l’inversion. L ’echantillonnage de Gibbs et la formulation implicite four­
nis une plateforme efficace pour l’ajout et la suppression des sources lors de l’optimisation. Un exemple 
simule est présente qui considere la localisation d ’une source tranquille immerge dans la presence de 
deux sources d ’interfrence forte.

1. INTRODUCTION

Matched-field processing methods have been applied 
extensively to localize an acoustic source in the ocean 
based on matching acoustic fields measured at an array 
of hydrophones with replica fields computed via a numer­
ical propagation model for a grid of possible source loca­
tions [1]—[6]. Two challenging problems in matched-field 
processing involve source localization when properties of 
the environment (water column and seabed) are poorly 
known, and localization of multiple sources. Both issues 
are addressed in this paper.

The ability to  localize an acoustic source is strongly

affected by available knowledge of the ocean environ­
ment, such th a t environmental uncertainty often repre­
sents the limiting factor for localization in shallow wa­
ter [7]-[9]. To account for environmental uncertainty in 
localization, unknown environmental parameters can be 
included, in addition to  the source location, in an aug­
mented inverse problem, and the misfit between mea­
sured and modelled fields minimized over all parameters, 
an approach referred to  as focalization [10]-[14].

Considering multiple-source localization in a known 
environment, a number of variants of the matched-field 
method have been proposed based on eigenvector decom-
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positions and/or specialized misfit functions [15]—[18]. In 
addition, iterative methods have been applied for local­
izing a weak source based on sequentially identifying and 
canceling stronger interfering sources [19]. An approach 
to simultaneously localize multiple sources in a known 
environment was developed by Michalopoulou [20] based 
on a Bayesian formulation and Gibbs sampling the pos­
terior probability density over source locations, complex 
source strengths (amplitudes and phases), and noise vari­
ance, to provide a collection of models from which the 
best estimate can be selected. This approach was shown 
to be superior to coherent interference cancellation using 
a series of single-frequency Monte Carlo simulations. In 
addition, it was shown that the approach can be extended 
to sample over the number of sources. However, it was 
also shown that the approach is highly sensitive to envi­
ronmental uncertainties, with even small environmental 
mismatch precluding successful localization.

Recently, Dosso and Wilmut [21] developed a Bayes­
ian focalization approach for simultaneous localization 
of a fixed number of sources in an unknown environ­
ment. This is a computationally demanding problem, 
and the efficiency was improved greatly by applying an­
alytic maximum-likelihood solutions for complex source 
strengths [15] and noise variance [22] at each frequency, 
which allow these parameters to be sampled implicitly 
(i.e., as a function of the source locations and environ­
mental parameters) rather than explicitly. This substan­
tially reduces the dimensionality and difficulty of the 
inversion, particularly for multi-frequency applications. 
The Bayesian focalization scheme is based on Gibbs sam­
pling for source locations and applying hybrid optimiza­
tion (adaptive simplex simulated annealing) [23] over en­
vironmental parameters. To determine the number of 
acoustic sources present, the focalization algorithm was 
run a series of times for an increasing numbers of sources, 
and the Bayesian information criterion (BIC) was com­
puted from the results after the fact. (The BIC [24], [25] 
is an information measure used in model selection which 
trades off the ability to fit data with the number of free 
parameters in the model; the model that minimizes the 
BIC represents the smallest number of parameters which 
adequately fits the data, and is the preferred solution 
according to Occam’s razor.)

This paper extends the multiple-source Bayesian fo- 
calization approach in [21] by sampling over the number 
of acoustic sources as part of the optimization process 
and directly minimizing the BIC, rather than the data 
misfit [26]. This requires only a single optimization run to 
determine the number and location of the sources, which 
is more convenient and can be more efficient than mul­
tiple runs with after-the-fact model selection. However, 
the manner in which sources are added to and deleted 
from the model during the optimization process repre­
sent crucial components of this algorithm. Purely ran­
dom source additions and deletions generally have a very 
low probability of improving the solution and suffer a 
high rejection rate, which can lead to an algorithm that 
is in fact less efficient that the original [21]. It is shown 
here that Gibbs sampling from the conditional probabil­

ity distribution given existing sources together with the 
implicit formulation for source strengths provides an ef­
ficient scheme to add sources, while applying a similar 
procedure to re-sample the remaining source locations 
provides efficient source deletion.

The remainder of this paper is organized as follows. 
Section 2 provides an overview of the theory and algo­
rithms developed here, including the Bayesian formula­
tion, likelihood function for implicit sampling, optimiza­
tion algorithm, and model-selection procedure whereby 
sources are added and deleted. Section 3 illustrates local­
izing an unknown number of sources in a poorly-known 
environment using a simulation based on a quiet sub­
merged source and two loud near-surface interferers. Fi­
nally, Section 4 summarizes and discusses this work.

2. THEORY AND ALGORITHMS 

2.1 Bayesian Formulation

This section describes a Bayesian focalization ap­
proach for multiple-source localization in an uncertain 
ocean environment [21]. Let d  be a vector of N  data 
representing complex (frequency-domain) acoustic fields 
at an array of hydrophones. Let M  denote the model 
specifying the choice of physical theory and parameteri­
zation for the problem, and let m  be the vector of M free 
parameters representing a realization of M  (e.g., source 
and environmental parameters). In a Bayesian formu­
lation these quantities are considered random variables 
related by Bayes’ rule

P  (m |d, M )
P (d|m, M ) P (m |M ) 

P  (d |M ) '
(1)

In Eq. (1), P (m|d, M ) is the posterior probability den­
sity (PPD) representing the state of information for the 
parameters including both data information, represented 
by P (d |m , M ), and prior information, P  (m, M ). Inter­
preting the conditional data probability density 
P (d |m , M ) as a function of m  for a fixed model M  and 
measured data d  defines the likelihood function, L(m) «  
exp [—E(m)], where E  is the data misfit function (dis­
cussed in Section 2.2). Hence, Eq. (1) can be written

P  (m|d, M)
exp [—̂>(m; d, M)] 

exp [—̂ (m '; d, M)] dm'
(2)

where a generalized misfit function, combining data and 
prior information, is defined

^(m; d, M ) =  E(m; d, M ) — loge P (m |M ). (3)

This paper considers optimization approaches to com­
pute the most-probable (optimal) model parameters, which 
maximize the PPD, or equivalent, minimizes >̂:

m  =  arg max P (m|d, M ) =  arg min ^(m; d, M ). (4)
m m
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The optimization required in Eq. (4) is carried out nu­
merically as described in Section 2.3. In this paper, 
prior information for source locations and environmental 
parameters consist of uniform distributions: the local­
ization bounds delineate the source search region, while 
the environmental bounds define the range of physically- 
reasonable values for water-column and seabed parame­
ters. However, it is also straightforward to apply non­
uniform priors via Eqs. (2) and (3) if more specific infor­
mation is available.

2.2 Likelihood Function

An insightful formulation of the likelihood function 
can greatly improve the efficiency of the optimization re­
quired in Eq. (4). In particular, the dimensionality of the 
inverse problem can be reduced significantly by applying 
a likelihood function which treats the source strengths 
and error statistics as implicit, rather than explicit, un­
knowns. To develop the implicit approach [21], consider 
data d  =  {df ; f  =  1, Np } consisting of complex acoustic 
measurements at Np frequencies and N H hydrophones 
(i.e., d f  =  {[df]h; h =  1 ,N H} is a complex vector with 
NH elements, and there are N p such vectors compris­
ing the data set). The acoustic field at each frequency 
is assumed to  be due to N S sources at locations (ranges 
and depths) x  =  {xs =  (rs , zs); s =  1, N S} with complex 
source strengths a  =  {[af]s}. The data errors are con­
sidered complex Gaussian-distributed random variables 
with unknown variances v  =  { v f }, and the unknown en­
vironmental parameters are represented by e. In this 
case the set of model parameters is m  =  {x, e, a, v }, and 
(suppressing the dependence on M  for simplicity) the 
likelihood function is

L(x,  e, a, v; d)

leading to
d f D f a f  ■ (8)

Provided there are more hydrophones than sources, the 
complex system of equations (8) is over-determined and 
can be written as an N S x N S system

D f d f  =  D f D f a f , (9)

where t indicates conjugate transpose. The system of 
equations (9) represent the least-squares normal equa­
tions, which are straightforward to solve for the ML esti­
mate a  (singular-value decomposition is applied here to 
ensure a stable solution [27]). Writing this solution in 
terms of matrix inversion,

a f  =  D f  d f ,

where the generalized inverse is defined

-i

D -gD f D f D f D f ■

(10)

(11)

Substituting Eq. (10) into (7) leads to

N f

E (x, e, v ; d) =  £  | ( I -  D f  D —

f=i
d f /Vf +  N h  loge Vf, 

(12)

where I is the identity matrix. Considering next the data 
errors, applying d E / d v f  =  0 to Eq. (12) leads to ML 
solution

1 / \ 2 

f  ^  ( 1 -  D f f  d f  ■ (13) 

Substituting Eq. (13) into (12) and neglecting additive 
constants leads to

N f  N s  NF I  \

I I  ex p [- |d f  -  £  [af ]s d f  (xs, e) |2/v f  ] E (x , e; d) =  N h  E  loge ( 1 -  D f D / J  d f
f = 1 ( f  ) s=1 f  1

(14)

N F

exp [ - E |df  -  D f a f  |2/vf ]>nN=Fi(nVf )Nh ‘ l f =

(5)

where d f  (xs , e) represents the modelled acoustic fields 
computed for a unit-amplitude, zero-phase source at lo­
cation x s, and D f  is an N H x N S complex matrix defined

[Df ]hs =  [df ]h(xs , e ) . (6)

Equation (5) can be written L « e x p [-E ] where the data 
misfit (negative log-likelihood) function is given by

N f

E (x  e, a, v ; d) =  |df  -  D f a f  |2 /v f  +  N H loge Vf ■ 
f=1

(7)
Considering first source strengths, the maximum-likeli- 
hood (ML) estimate is obtained by setting d E /d a f  =  0

Evaluating Eq. (14) for specific x  and e automati­
cally applies the ML estimates for a  and v . Hence, using 
this equation in focalization, the corresponding variabil­
ity in source strengths and variance’s is accounted for 
implicitly. This implicit sampling replaces explicit sam­
pling over these parameters, substantially reducing the 
dimensionality of the inversion. For an environmental 
model with N E parameters, explicit sampling of all pa­
rameters involves solving an optimization problem of di­
mension 2NSNp +  Np +  2NS +  N E , whereas implicit 
sampling reduces this to 2NS +  N E. For example, in the 
test case considered in Section 3 which involves 3 sources 
at 3 frequencies and 8 environmental parameters, the di­
mensionality is reduced from 35 to 14. If desired, the 
values for the source strengths assumed during implicit 
sampling can be obtained via Eq. (10).

2

1
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2.3 O ptim ization

The optimization algorithm developed for Bayesian 
focalization represents a hybrid approach th a t adaptively 
combines elements of the global-search method of sim­
ulated annealing (SA) with the local downhill simplex 
(DHS) method. SA [28] is based on an analogy with sta­
tistical thermodynamics, according to which the proba­
bility that a system of atoms at absolute temperature T  
is in a state m  with free energy ^>(m) is given by the 
Gibbs distribution, which can be written

P t(m ; T )
exp [—̂ (m ) /T ]

/  exp [—4>(m)/T] dm
(15)

Unlike in classical physics, the probability distribution 
for non-zero T extends over all states, and system transi­
tions which increase ^  are allowed, although these are less 
probable than transitions which decrease ^. SA is based 
on sampling the Gibbs distribution P t  while gradually 
lowering T to simulate the system in near-equilibrium 
as it evolves to its ground state (global minimum-energy 
configuration). In an optimization problem, ^  represents 
an objective function to  be minimized over a set of pa­
rameters m  (the correspondence is clear for inversion: 
the PPD, Eq. (2), represents a Gibbs distribution at unit 
temperature).

Two sampling approaches are commonly used in SA. 
Metropolis sampling [29], [30] simulates Gibbs equilib­
rium by repeatedly perturbing parameters and accepting 
perturbations for which a random number £ drawn from 
a uniform distribution on [0,1] satisfies

£ < exp [—A ^ /T ] ; (16)

if this condition is not met, the perturbation is rejected. 
Alternatively, Gibbs sampling [29], [30] (also called heat- 
bath SA), draws a perturbed parameter at random from 
the (non-normalized) conditional probability distribution 
for th a t parameter, with other parameters held fixed at 
their current values, and the new value is accepted un­
conditionally. For example, in Gibbs sampling a new 
value for parameter m* is drawn from the conditional 
distribution

P t  (mi) =  exp [—̂ (m* | m i m ;_ i , m * + i m M )] /T.
(17)

Gibbs sampling can be much more efficient than Metropo­
lis sampling if the conditional distribution can be com­
puted for all values of mi in a single calculation. This 
is the case for source range and depth in focalization, as 
the acoustic field can be computed over the search region 
from a single computation of the normal mode functions 
and wave-numbers given fixed environmental parameters
[31]. However, Gibbs sampling cannot be applied effi­
ciently to optimize over environmental parameters, and 
Metropolis sampling must be used for these.

In Metropolis sampling, the type of perturbations is 
an important factor determining efficiency. In particu­
lar, perturbations along the parameter axes can be inef-
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ficient for correlated parameters, and perturbation size 
is an important factor. While large perturbations are re­
quired at early stages (high T) to  widely search the space, 
at later stages (low T ) these have a high rejection rate. 
The method of very-fast simulated re-annealing (VFSR) 
draws perturbations from Cauchy distributions and re­
duces the distribution width for each parameter linearly 
with temperature, applying a different rate of tem per­
ature reduction (chosen arbitrarily) for each parameter
[32]. However, selecting appropriate temperature reduc­
tion factors can be difficult.

The method of adaptive simplex simulated anneal­
ing (ASSA) combines components of VFSR and DHS in 
an adaptive hybrid algorithm [23]. DHS operates on a 
simplex of M  +  1 models in an M-dimensional model 
space, and generates local downhill steps using a geo­
metric scheme based on reflections and contractions of 
the highest-misfit model relative to the remainder of the 
models in the simplex [27], [33]. ASSA applies pertur­
bations consisting of a DHS step followed by a Cauchy- 
distributed random variation, which are accepted or re­
jected according to the Metropolis criterion (16). The 
trade-off between randomness and determinism (i.e., gra­
dient information) is controlled by adaptively scaling the 
Cauchy distribution width for each parameter based on 
the idea th a t the size of the recently-accepted pertur­
bations provides an effective scaling for new perturba­
tions. In particular, ASSA draws random parameter per­
turbations using Cauchy distributions scaled adaptively 
by the running average of the accepted random perturba­
tions for th a t parameter over the last several temperature 
steps. Incorporating DHS in a SA framework provides 
gradient information th a t speeds convergence, overcomes 
parameter correlations, and provides an effective mem­
ory for the algorithm (since the simplex contains the M  
best models encountered to th a t point in the search). 
ASSA has proved to be a highly effective optimization 
algorithm in a number of applications [34]-[36], and is 
used here for optimizing over environmental parameters 
in multiple-source focalization.

2.4 M od e l Selection: N u m b er  of  Sources

Determining the number of sources th a t contribute 
significantly to the total acoustic field is an important 
but challenging issue in multiple-source localization. In 
a Bayesian formulation this can be considered an applica­
tion of model selection, i.e., seeking the most appropriate 
model M  given the measured data d. In Bayes’ rule (1), 
the conditional probability P (d |M )  of the data for a 
particular model parameterization can be considered the 
likelihood of the parameterization given the data, re­
ferred to  as the Bayesian evidence for M . Since the 
evidence serves as a normalizing factor in Bayes’ rule, 
it can be written

P (d |M )  =  y  p (d |m , M )  P (m |M ) dm. (18)

Unfortunately, this integral is particularly difficult to eval-
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uate [37], [38], and cannot be solved repeatedly within 
a numerical optimization algorithm. Alternatively, the 
BIC [24], [25], an asymptotic point estimate of evidence, 
is applied here:

—2loge P (d |M )  «  BIC =  —2logeL(m; d, M )+ M lo g eN,
(19)

where m  is the optimal model, and M  and N  are the total 
number of parameters and data, respectively. For the 
development here, this can be written, within an additive 
constant, as

BIC =  2E  (m; d, M ) +

(2Ns  N p + N p  +  2Ns +  N e )loge 2Np N h  , (20)

where the factor of two in the expression for N  results 
from complex data. Because the BIC is based on the 
negative log likelihood, low BIC values are preferred. The 
first term on the right of Eq. (20) favors models with 
low misfits; however, this is balanced by the second term 
which applies a penalty for additional free parameters. 
The data misfit can always be decreased by including 
more parameters; however, at some point this decrease 
is not justified and the model is over-parameterized and 
the data over-fit. Minimizing the BIC provides the model 
with the smallest number of parameters required to fit 
the data, or, conversely, the largest number of parameters 
resolved by the data. This provides the preferred solution 
according to Occam’s razor (hypotheses/models should 
be as simple as possible).

Earlier work on multiple-source localization [21] was 
based on an algorithm that minimized E (m ) for a fixed 
number of sources. This algorithm was run a series of 
times for an increasing numbers of sources (NS =  1, 2 , . . .) ,  
and the BIC computed from the optimization results af­
ter the fact to identify the preferred solution. The present 
paper develops a localization approach which samples 
over the number of sources as part of the optimization, 
and directly minimizes the BIC. In this approach a single 
optimization run determines the number and location of 
the sources. Adding and deleting sources during the opti­
mization are examples of what are referred to as “birth” 
and “death” moves, respectively, in trans-dimensional in­
version [39], [40], in which these moves are accepted or 
rejected according to the Metropolis criterion, Eq. (16). 
As such, the manner in which sources are added to  and 
deleted from the model is vitally important. Adding 
sources of random strength at locations drawn from a 
uniform random distribution over the search region has 
a very low probability of improving the solution, and 
suffers a high rejection rate. Likewise, deleting sources 
purely at random is an inefficient procedure.

In the multiple-source focalization algorithm devel­
oped here, the range and depth for a new source to be 
added to the model are drawn by applying two-dimen­
sional (2-D) Gibbs sampling, i.e., drawn from the 2-D 
conditional probability distribution for the location of a 
new source, given the current values of the locations and 
strengths of all existing sources and of the environmental 
parameters. Further, the complex strength for the new

source is assigned the ML value as given by Eq. (10). 
Assigning the location and strength of a new additional 
source in this manner has a far higher probability of pro­
ducing a good fit to the acoustic data, and hence being 
accepted according to the Metropolis criterion, than uni­
form random draws. Further, the probability of selecting 
a good source location increases as the temperature de­
creases according to  Eq. (17), in keeping with a wide 
search of the parameter space at high T , and a more- 
focused local search to ensure convergence at low T .

To improve the acceptance rate of deleting a source 
from the model, the procedure developed here is to re­
sample the locations of the existing sources by 2-D Gibbs 
sampling, again applying the ML source strength esti­
mates. This allows the remaining sources to  re-distribute 
themselves so as to best accommodate the change in the 
total acoustic field due to the deleted source.

The above procedures have been found to provide an 
efficient scheme to add or delete a source during focal- 
ization. Focalization for an unknown number of sources 
is based on a series of perturbation cycles at each tem ­
perature step, with each cycle consisting of: (1) per­
turbing and accepting/rejecting environmental parame­
ters via ASSA, (2) perturbing existing source locations 
via Gibbs sampling, and (3) attempting either a source 
addition or a deletion (chosen randomly with 0.5 proba­
bility each). If a source deletion is attempted, the source 
to be deleted is chosen uniformly at random from the 
existing sources.

3. EXAM PLE

This section illustrates multiple-source focalization 
with a simulated example involving two relatively strong 
near-surface sources and a third quieter submerged source 
in a poorly-known environment. The scenario is illus­
trated  in Fig. 1 and parameter values and prior bounds 
for source locations and environmental parameters are 
summarized in Table 1. The locations ofthe three sources 
are (r i, z i) =  (7 km, 4 m), (r2, z2) =  (3 km, 2 m), and 
(r3, z3) =  (5.4 km, 50 m), with corresponding signal-to- 
noise ratios (SNRs) at the receiver array of 10, 5, and 
0 dB at each of three frequencies of 200, 300, and 400 Hz. 
Simulated acoustic data were computed at a vertical line 
array comprised of 24 hydrophones at 4-m spacing from 
4- to 100-m depth in 100 m of water using the normal­
mode propagation model ORCA [31]. Random complex 
Gaussian errors were added to  the synthetic data with 
variances and source amplitudes set at each frequency 
to achieve the SNRs given above. The resulting source 
amplitudes A sf  =  |[ay]s | are approximately 1.00, 0.60, 
and 0.2 for sources s =  1, 2, and 3, respectively (am­
plitudes vary slightly with frequency). For simplicity, 
source phases, 0sf  =  ta n -1 (K([ay]s}/S{[ay]s}), were set 
independent of frequency as n /4 , n /2 , and —n /2  radians 
for sources s =  1, 2, and 3, respectively. Note, how­
ever, th a t the localization algorithms consider indepen­
dent complex source strengths for each source and fre­
quency. The prior information for all source locations is a
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Table 1: Parameter values and prior bounds for source 
and environmental parameters (in the units for attenua­
tion, A represents wavelength).

P a r a m e t e r s T r u e  v a lu e s B o u n d s

N s 3 [1 ,4]

T \  (k m ) 7 [0 ,10 ]

r 2 (k m ) 3 [0 ,10 ]

r 3 (k m ) 5 [0 ,1 0 ]

z i  (m ) 4 [0 ,1 0 0 ]

Z2 (m ) 2 [0 ,1 0 0 ]

Z3 (m ) 50 [0 ,1 0 0 ]

D  (m ) 100 [9 8 ,1 0 2 ]

Cb ( m / s ) 15 8 0 [1500 , 1700]

Pb ( g / c m 3 ) 1.5 [1 .2 , 2.2]

a b ( d B / A ) 0.1 [0, ,0 .5  ]

Ci ( m / s ) 15 2 0 [1515 , 1525]

C2 ( m / s ) 1 5 1 7 [1514 , 1522]

C3 ( m / s ) 15 1 3 [1 5 1 0 ,1 5 1 6 ]

C4  ( m / s ) 15 1 0 [1508 , 1512]

uniform distribution over 0-100 m in depth and 0-10  km 
range, and the number of sources, N S, was constrained 
to be 1-4. The numerical grid applied for localization 
involves depth and range increments of 2 m and 0.05 km, 
respectively (other parameters are treated as continuous 
variables). Unknown geoacoustic parameters include the 
sound speed, cb, density, pb, and attenuation, ab, of a 
uniform bottom. Water-column unknowns include the 
water depth, D, and the sound-speed profile represented 
by four parameters, C1-C4 , at depths of 0, 10, 50, and 
D m. Prior information for the environmental parame­
ters consists of uniform distributions over bounded inter­
vals representing large uncertainties, as given in Table 1.

The multiple-source focalization algorithm described 
in Section 2 was applied to the above problem as follows. 
The tem perature was initiated at a value T0 high enough 
so th a t essentially all perturbations were accepted ini­
tially, and reduced logarithmically according to  T  =  
plT0 where i represents the temperature step and p  =

F ig u r e  1. Schematic diagram of the multiple-source localization 
problem, including unknown environmental parameters (defined 
in text), source locations, and vertical line array (VLA) of hy­
drophones.
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F ig u r e  2 .  Focalization process for the BIC, number of sources. 
N s  , and source ranges and depths, r i —r 4 and z i— Z4 , respectively. 
Dotted lines at right indicate true values.

0.99. At each temperature step 10 accepted perturba­
tions of the environmental parameters were required, and 
the running-average perturbation sizes used in ASSA were 
computed from 3 temperature steps (30 accepted mod­
els). As described in Section 2.4, after each environmen­
tal perturbation via ASSA, source locations were sam­
pled via Gibbs sampling, and source additions or dele­
tions were attempted.

Figure 2 shows the focalization process in terms of 
the BIC, number of sources, N S, and source ranges and 
depths for the 4 possible sources as a function of tem per­
ature step (when a source is not present, its range and 
depth are set to zero). Parameter values for all models 
in the simplex are shown; however, for clarity, only one 
realization of the simplex for each temperature step is in­
cluded (i.e., the total number of models plotted is down­
sampled by a factor of 10). For graphical purposes, the 
BIC values have been shifted arbitrarily since only the 
relative variation in is relevant.

The BIC, shown in Fig. 2(a), decreases by approx­
imately 300 in value during the focalization procedure. 
The number of sources, N S, shown in Fig. 2(b), ini­
tially favours smaller numbers, since early in the inver­
sion when the data are poorly fit the penalty for extra 
parameters tends to dominate the misfit. As the model 
parameters improve with temperature step (shown in 
this and subsequent figures), the data misfit becomes a 
more important component of the BIC, and the num­
ber of sources tends to increase, varying from 1-4 be­
tween about temperature steps 100-150. Above about 
temperature step 150 the variability decreases, and N S 
ultimately converges to the correct value of 3 sources for 
all models in the simplex. Figure 2(c)-(j) shows that, 
after initial wide variation, the source ranges and depths
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F ig u re  3. Focalization process for th e  BIC, num ber of sources, 
N s  , and  source am plitudes, A sf , where indices s and  f  identify the  
source and  frequency, respectively. D o tted  lines a t  right indicate 
tru e  values.

converge to excellent estimates of the true values. The 
rate of convergence appears to be in order of SNR, with 
source 1 (SNR =  10 dB) converging slight earlier than 
source 2 (5 dB), which in turn converges slightly earlier 
than source 3 (0 dB).

While successful estimation of the number and loca­
tion of the acoustic sources, as shown in Fig. 2, is the goal 
of multiple-source focalization, it is interesting to also 
consider the results in terms of complex source strengths 
and geoacoustic parameters. Figure 3 shows the source 
amplitudes sampled during the focalization process. In 
general, the final amplitude estimates represent reason­
able approximations of the true values, with the poor­
est results for the first (strongest) source at each of the 
3 frequencies (i.e., A 11-A 13). Further, the amplitudes 
at each frequency are correctly ordered in magnitude, 
with A 1f  > A 2f  > A 3f , f  =  1 , . . . , 3.  Figure 4 shows 
the source phases sampled during focalization. Rough 
approximations to the true phases are obtained in most 
cases, although considerable variability persists to the 
lowest temperatures.

Finally, Fig. 5 shows the environmental parameters 
throughout the focalization process. Figure 5(d) shows 
that the seabed sound speed cb is particularly well es­
timated within the search bounds, and good results are 
also obtained for seabed density and attenuation, pb and 
ab, in Fig. 5(e) and (f), respectively. Figure 5(c) shows 
that the water depth D is somewhat under-estimated; 
this is likely due to correlations with the water-column 
sound speeds c1-c4 in Fig. 5(g)-(j) which are also under­
estimated, as it is the water depth divided by sound speed 
that determines the acoustic transit time over the water 
column affecting modal properties.

0 100 200 300 100 200 300 100 200 300 
T em p era tu re  S tep  T em p era tu re  S tep  T em pera tu re  Step

F ig u re  4. Focalization process for th e  BIC, num ber of sources, 
N s  , and  source phases, 9sf , where indices s and  f  identify the  
source and  frequency, respectively. D o tted  lines a t  right indicate 
tru e  values.

4. SUMMARY AND DISCUSSION

This paper developed and illustrated Bayesian focal­
ization for the simultaneous localization of an unknown 
number of acoustic sources in an uncertain ocean en­
vironment. The approach is based on formulating the 
posterior probability density over the source locations 
and complex source strengths (amplitudes and phases) 
as well as unknown environmental properties and noise 
variances. The Bayesian information criterion was mini­
mized over all these parameters, as well as over the num­
ber of sources, providing the optimal trade-off between 
data misfit and model parameterization and identifying 
the number of sources resolved by the data. The mini­
mization was carried out efficiently by applying adaptive 
hybrid optimization (ASSA) over environmental param­
eters and Gibbs sampling over source locations. Analytic 
maximum-likelihood solutions were applied for source 
strengths and noise variances, which allow these param­
eters to be sampled implicitly. Sources were added to 
the model during inversion using Gibbs sampling and 
ML source strengths to provide a reasonable acceptance 
rate. Similarly, when a source was deleted, Gibbs sam­
pling was applied to re-position the remaining sources for 
reasonable acceptance.

The Bayesian focalization approach was illustrated 
for a 3-source, 3-frequency example involving two rela­
tively strong near-surfaces sources (SNRs of 10 and 5 dB) 
and a quieter submerged source (SNR =  0 dB) with sub­
stantial uncertainties in water-column and seabed prop­
erties. Minimizing the BIC determined the correct num­
ber of sources present, and all sources were successfully 
localized. The example showed that multiple-frequency 
acoustic data at these SNRs provide sufficient informa­
tion to estimate the number and locations of multiple

A23
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sources, as well as to approximate source amplitudes and 
phases and unknown environmental parameters.

Finally, it is worth noting th a t repeated runs of a 
similar inversion algorithm which varied the number of 
sources but minimized the data misfit, rather than the 
BIC, always selected 4 sources (the upper bound) for 
the 3-source test case. Further, while the two strong 
sources were always correctly localized, the quiet sub­
merged source was generally not, although the acoustic 
data were well fit. Hence, minimizing an objective func­
tion which combines data misfit with a penalty for over­
parameterization, as in the BIC, appears to be necessary 
to reliably localize an unknown number of sources in ap­
plications such as this.
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