TO REDUCE OR NOT TO REDUCE : EVIDENCE FROM SENCOTEN STORYTELLING

Sonya Bird, Ewa Czaykowska-Higgins, and Janet Leonard

Dept. of Linguistics, University of Victoria, PO Box 3045, Victoria BC, V8T3K5 sbird@uvic.ca

1. INTRODUCTION

It is a well-known fact that articulatory, and consequently acoustic, events are compressed in fluent speech; a process known as 'reduction' (Johnson 2004). Research has shown that when it comes to reduction, not all segments are equally affected; for example when reduction occurs at fast speech rates, effects are often greater on vowels than on consonants (Gay 1981). This paper reports on a preliminary investigation of reduction in the speech of a single fluent SENCOTEN speaker. The focus is on /vowel-?-ə/ vs. other /vowel-?-vowel/ sequences; we show that while the former reduce to a single lengthened vowel, the latter do not. As a whole, results support previous claims that /ə/ in Salish is phonologically and phonetically distinct from full vowels (Czaykowska-Higgins & Kinkade 1998), and that reduction is sensitive to the particular vowels involved, affecting some but not others.

2. METHOD

The dataset for the study consisted of 130 words extracted from a SENCOTEN story told by a fluent speaker, recorded in the 1970s. These words fell into three sets, corresponding to three different kinds of sequences: Set 1 consisted of 58 /v?ə/ sequences; of these, 52 were /e?ə/, hence the focus on these sequences in the acoustic analysis (see below). Set 2 consisted of 12 other /v?v/ sequences; as is clear from the token count, these occurred relatively rarely in the story. Set 3 consisted of 60 tokens of /e/; these provided a baseline against which to compare the acoustic properties of /e?ə/. Table 1 provides a summary of the dataset.

Table 1. Tokens analyzed (target sequence in bold)

Set	Sequence	#	Example	Gloss
	/e?ə/	52	/le?ə/	'there'
Set 1	/i?ə/	3	/net∫ti ?ə s/	'different
	/a?ə/	3	/q ^w a?ə ŋ/	'water'
	/e?i/	8	/t∫e ?i /	'work'
Set 2	/e?u/	2	/je?u/	'went'
	/i?e/	2	/t i?e /	'this'
Set 3	/e/	60	/məqsten/	'everything'

The dataset included a number of words which were repeated multiple times (e.g. seven of the eight /e?i/

sequences are from different repetitions of the word /tʃe?i/ 'work'). Multiple repetitions of a single word were treated as separate items in the qualitative analysis (3.1) because there was no easy way of averaging across them; in the quantitative analysis (3.2), they were aggregated and treated as a single item, as long as they were consistent in terms of stress and position (see 3.2 below for details).

3. RESULTS

3.1 Qualitative analysis

All /v?v/ sequences (58 /v?) and 12 other /v?v/) were first transcribed based on auditory analysis, to determine (impressionistically) to what extent they were reduced. Table 2 summarizes the results.

Table 2.	Transcri	ptions by	sequence	type
		•		

Set	Sequence	Transcription (#)	Most common
Set 1	/e?ə/ (52)	[e:] (47); [e] (1); [e?ə] (2)	
/v?ə/ (58)	/i?ə/ (3)	[ije] (2); [e:] (1)	[v:]
(38)	/a?ə/ (3)	[ɑ:] (2); [aʔə] (1)	
Set 2	/e?i/ (8)	[e?ei] (7); [ei] (1)	[v?v]
/v?v/ (12)	/e?u/ (2)	[eju]	or
	/i?e/ (2)	[i:] (1); [ije] (1)	[vjv]

In general, transcriptions reflect the fact that $/v? \vartheta$ / tends to reduce to [v:] while other /v?v/ sequences tend either not to reduce, or to reduce to [vjv]; the latter case is interesting and may have to do with the phonological status of /?/ in these words (underlying vs. derived from glottalized /j'/), but will not be further discussed here. Focusing on $/v?\vartheta/$ vs. other /v?v/ sequences, it is interesting to note that while the seven repetitions of /tfe?i/ ('work') *do* seem to reduce to varying degrees, none of them reduce to the extent that they lose the glottal stop entirely, as do the vast majority of $/v?\vartheta/$ sequences.

3.2 Quantitative analysis

Based on the finding that /v?ə/ tends to reduce to [v:], a subset of these sequences - /e?ə/ ones - were analyzed in Praat in terms of: a) duration, b) vowel quality (F1 and F2 at 25% and 75% into the vowel), and c) glottalization (jitter, spectral tilt, amplitude dip, and pitch dip during the target

interval). Acoustic analysis was limited to /e?ə/ sequences for two reasons: 1) they were by far the most common /v?a/sequence and so provided a unified set for analysis, and 2) the resulting [e:] could easily be compared to the underlying SENCOTEN /e/ vowel, which also occurred relatively frequently in the story. As mentioned above, the set of words used in this study included a number of repetitions. As it turned out, the 60 /e/ tokens came from a much more varied set of words than did the 52 /e?ə/ tokens, which were extracted from a relatively small set of frequently repeated function words. Repetitions were aggregated only if stress (stressed vs. unstressed) and position (final vs. non-final) were consistent, leading to the analysis of 50 /e/ items and 22 /e?ə/ items. A series of two-factor between-items ANOVAs was used to investigate acoustic differences between underlying /e?ə/ and /e/; the two factors were sequence (/e/ vs. /e?ə/) and position (final vs. non-final). Position was included because the correlates of phonemic glottalization are sometimes confounded with those of prosodic (utterance-final) position.

The primary difference between /e?ə/ and /e/ was in term of duration: the main effect of sequence was significant F (1, 71) = 50.38; p < 0.001), with /e?ə/ almost twice as long (238ms) as /e/ (130ms). The effect of position was not significant, and neither was the interaction. This durational difference confirmed the auditory analysis (see 3.1), in which /e?ə/ was transcribed as [e:] and /e/ as [e].

Although less salient auditorily, /e?ə/ and /e/ also differed in vowel quality, particularly in terms of F2: /e?ə/ had a significantly lower F2 than did /e/ at both 25% (F(1,71 = 10.10, p < 0.01) and 75% (F(1,71 = 16.73, p < 0.001) into the vowel - see Figure 2. F1 was significantly higher in /e?ə/ than in /e/ only at 25% into the vowel (F(1,71 = 4.09, p < 0.05). Together, F1 and F2 values indicate that /e?ə/ is more retracted and slightly lower than /e/. Interestingly, both /e?ə/ and /e/ are realized in the range of [ϵ] (Kent & Read 2002), a lower and laxer version of the mid-front vowel previously documented in SENĆOTEN (Montler 1986).

Figure 2. /e/ in /net/ 'name' vs. /e?ə/ in /le?ə/ 'there' (/e/ is shaded).

There was little consistent evidence of any underlying glottalization in /e?ə/ sequences. Of the acoustic measurements taken, only pitch and amplitude dips showed effects. These were calculated by subtracting the minimum

pitch/amplitude from the maximum within the target interval (/e/ or /e?ə/). For both pitch and amplitude, there was an interaction between sequence and position, with dips significantly greater in /e?ə/ than in /e/ in utterance final position only (pitch: F(1,20) = 14.43, p<0.01; amplitude: F(1,20) = 11.65, p<0.01). Table 3 summarizes these results.

Table 3.	Pitch	and	amplitude dips
----------	-------	-----	----------------

Sequence	Pitch dip (Hz)	Amplitude dip (dB)
/e/	29 (14)	8 (3)
/e?ə/	33 (20)	9 (2)

4. **DISCUSSION**

Overall, results showed two things: 1) /v?ə/ sequences tended to reduce to [v:] while other /v?v/ sequences did not; 2) reduced /e?ə/ sequences were distinguishable from underlying /e/ in duration and to a lesser extent in vowel quality, but not (consistently) in degree of glottalization. The pronunciation of /v? = /as [v:] can be viewed as a more extreme version of "schwa assimilation across glottal stop". which has previously been reported in SENCOTEN (Montler 1986, p. 29). The fact that /e?ə/ sequences exhibited greater reduction effects than other /v?v/ sequences, and also that they showed greater dips in pitch and amplitude utterance-finally than did /e/ is possibly related to the fact that /e?ə/ sequences were extracted primarily from function words, whereas other /v?v/ sequences and /e/ were extracted from a more varied set of words. It may be the case that function words are more prone to a range of prosodic effects than are content words, a tendency that could prove useful as a diagnostic for teasing apart different word classes in Salish languages (Czaykowska-Higgins & Kinkade 1998).

REFERENCES

Czaykowska-Higgins, E & D. Kinkade (1998). Salish languages and linguistics. Berlin/New York: Mouton de Gruyter.

Gay, T. (1981). Mechanisms in the control of speech rate. Phonetica, 38, 148-158.

Johnson, K. (2004). Massive reduction in conversational American English. In Spontaneous Speech: Data and analysis – Proceedings of the 1st session of the 10th International Symposium, ed. Yoneyama, K. & Maekawa, K. Tokyo, Japan: The National International Institute for Japanese Language, 29-54.

Kent R. & C. Read (2002) Acoustic analysis of speech, second edition. Albany NY: Singular; Thomson Learning.

Montler, T. (1986). An outline of the morphology and phonology of Saanich, North Straits Salish. University of Montana Working Papers in Linguistics 4.

ACKNOWLEDGEMENTS

Many thanks to our SENĆOŦEN-speaking collaborators in transcribing and translating the story we used for this study, and to the Jacobs Fund for funding the project.