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1. INTRODUCTION

Knowledge of seabed geoacoustic and scattering properties 
is important for sonar, geophysical, and geotechnical 
applications in shallow-water environments. Since direct 
measurements can be time consuming and expensive, 
inferring in-situ information about seabed model parameters 
from the inversion of ocean acoustic data has received a 
great deal of attention. A Bayesian approach to geoacoustic 
inversion [1,2] provides quantitative uncertainty analysis 
and has been applied for a variety of acoustic data types, 
including the inversion of full-field, reflection, dispersion, 
and reverberation measurements.

In Bayesian inversion, unknown model parameters are 
considered random variables constrained by measured data 
and prior information, with the goal of estimating integral 
properties of the multi-dimensional posterior probability 
density (PPD), such as marginal probability distributions. 
For nonlinear problems, such as geoacoustic inversion, 
numerical methods must be applied to estimate these 
integrals. In particular, the Markov-chain Monte Carlo 
method of Metropolis-Hastings sampling (MHS) has been 
applied in virtually all Bayesian geoacoustic inversions to 
date [1]. However, MHS can be inefficient for strongly 
nonlinear inverse problems involving PPDs with multiple 
modes (i.e., multiple isolated regions of high probability in 
the parameter space). For such problems MHS has the 
potential to miss important regions of the parameter space 
and to significantly under-estimate parameter uncertainties. 
Multi-modal PPDs have been observed for all of the 
geoacoustic data types mentioned above.

This paper applies the method of parallel tempering 
[3,4] to achieve efficient and effective sampling of a 
particularly challenging multi-modal problem involving the 
inversion of acoustic reverberation data for geoacoustic and 
scattering parameters. Parallel tempering has the ability to 
transition freely between multiple PPD modes by running 
parallel Markov chains at a series of increasing sampling 
temperatures T, with probabilistic interchanges between 
chains. High-71 chains provide wider sampling of the 
parameter space and the possibility of bridging isolated 
modes, while low-71 chains provide more precise local 
sampling but are prone to become trapped in localized 
regions of the space. Parallel tempering improves sampling 
by providing interchange between chains at different 
temperatures. Including higher-71 chains ensures that the 
lower-T chains can access all regions of the space while still 
providing efficient local sampling, resulting in a robust 
ensemble sampler.

2. EXAMPLE

This section compares MHS and parallel tempering for 
Bayesian geoacoustic inversion of simulated (noisy) 
reverberation data. Simulation provides a number of 
advantages for such comparisons, in that an appropriate 
model parameterization is known and the error statistics are 
also known and controlled. Hence, characteristics of the 
inversion, such as PPD multi-modality, arise solely from the 
physics of the forward problem, and are not an artifact of a 
poor choice or parameterization or unaccounted-for sources 
of error.

The (range-independent) seabed model assumed for the 
reverberation inversion problem is illustrated Fig. 1. The 
seabed is represented by an upper sediment layer of 
thickness h=5 m, sound velocity V!=1470 m/s, density 
Pi=1.4 g/cm3, and attenuation a 1=0.5 dB/wavelength, 
overlying a semi-infinite basement with corresponding 
parameters v2=1660 m/s, p2= 1.8 g/cm3, and a2=0.1 
dB/wavelength. Acoustic backscatter occurs at rough 
interfaces at the top and bottom of the sediment layer and at 
heterogeneities within the volume of the sediments. The 
spatial roughness of the upper and lower interfaces is 
assumed to be isotropic and characterized by a two­

dimensional power-law spectrumRt (k) = wik , where k  is 

the magnitude of the horizontal wave vector, w,- is the 
spectral strength, and yt is the spectral exponent, with /'=1,2 
corresponding to the upper and lower interfaces, 
respectively (values used here are wi = w2= 0.02 and yi = y2 
= 3). The volume-scattering intensity cross-section for the 
sediments is given by Sv = 10~6 m 3. Finally, the standard 
deviation of the data errors, a  =1 dB, is also considered an 
unknown parameter in the inversion. The reverberation data 
are shown in Fig. 2.

Figure 1. Schematic diagram of the two-layer seabed model 
indicating unknown parameters. The error standard deviation is 
also included as an unknown in the inversion.
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Figure 2. Simulated noisy reverberation data (circles) and 
modelled data (solid line) computed for the highest-probability 
model. Error bars indicate the maximum-likelihood standard- 
deviation Estimate evaluated at the most-probable model.

Both MHS and parallel tempering were applied to the 
reverberation inversion problem outlined above. The 
parallel tempering approach made use of a total 30 parallel 
chains, with 16 chains at T  = 1, 8 chains at T  = 2, 4 chains at 
T  = 4, and 2 chains at T  = 8. Results are based on the T=\ 
and 2 chains, with the samples collected at T  = 2 re­
weighted so as to remove the sampling bias which otherwise 
occurs for sampling at non-unity temperature [5],

All 13 model parameters described above were included 
in the two inversion approaches. However, given space 
constraints and to highlight sampling of multi-modal PPD 
structure, results are considered here only in terms of joint 
marginal probability distributions for sediment thickness 
and sound velocity which is highly multi-modal, as shown 
in Fig. 3. This figure compares inversion results for MHS 
and parallel tempering after various numbers of samples, as 
indicated on each panel (for parallel tempering the total 
number of samples is indicated, including samples at higher 
temperatures which were not included in the marginal 
distribution estimate).

Considering first the MHS results (left column of Fig. 
3), over the first 105 samples (top panel), the method has 
sampled only a single mode of the PPD, and if sampling 
was terminated here the multi-modality would go 
undetected and parameter uncertainties would be 
substantially under-estimated. A second PPD mode is 
detected by 2xl05 samples, and third mode by 5xl05 
samples. The marginal distribution does not change 
significantly in going from 105 to 106 samples, but by 2xl06 
samples additional modes are detected. From the behavior 
in Fig. 3, it appears unlikely that MHS has visited all modes 
even with 2xl06 samples, and it is clear the sampling is not 
even close to convergence (typically requiring many 
transitions between all modes).

Considering the parallel-tempering results (right column 
of Fig. 3), it is clear that the multi-modality of the joint 
marginals for h and Vj are mapped out far better with 105 
total samples using parallel tempering (top panel on right) 
than with 2xl06 samples using MHS (bottom panel on left).

In particular, the parallel-tempering marginal distribution 
includes multi-modal structure which is not apparent with 
MHS for sample sizes up to 20 times larger. Further, the fact 
that there is little practical difference in results for different 
parallel-tempering sample sizes in Fig. 3 indicates 
convergence by 105 samples, and hence large sample sizes 
are not required to map the complicated multi-modal PPD 
structure using this approach.
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Figure 3. Comparison of joint marginal probability distributions 
for h and Vj as computed using MHS (left column) and parallel 
tempering (right column) using the number of samples indicated 
on each panel.
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