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1. INTRODUCTION

This paper develops and illustrates an efficient approach to 
the simultaneous localization of an unknown number of 
ocean acoustic sources, based on minimizing the Bayesian 
information criterion (BIC) over source parameters [1]. A 
Bayesian formulation is developed in which the number, 
locations, and complex strengths (representing amplitudes 
and phases) of an unknown number of sources are 
considered random variables constrained by acoustic data 
and prior information. The BIC, which balances data misfit 
with a penalty for extraneous parameters, is minimized 
using simulated annealing, with Gibbs sampling applied 
over source locations. Closed-form maximum-likelihood 
(ML) expressions for source strength and noise variance at 
each frequency allow these parameters to be sampled 
implicitly, substantially reducing the dimensionality and 
improving the efficiency of the inversion. Gibbs sampling 
and the implicit formulation provide an efficient scheme for 
adding and deleting sources with a reasonable acceptance 
rate during the optimization. A simulated example is 
presented which considers localizing several quiet 
submerged sources in the presence of multiple loud near­
surface interfers.

2. THEORY

This section develops the Bayesian approach to multiple- 
source localization. Consider data d = {d.f, f  = 1, NP} 
consisting of complex (frequency-domain) acoustic fields at 
an array of NH hydrophones for NP frequencies. The field at 
each frequency is assumed to be due to 5 = 1, Ns acoustic 
sources at locations (ranges and depths) x = {x  ̂s = \ , N s }= 
{fo, zz) s= I, Ns } with complex strengths a = {[a/]*}. Errors 
on df are assumed to be complex Gaussian distributed with 
unknown variance vf. Let m = {x,a,v} represent the set of 
unknown model parameters. Data and parameters are 
considered to be random variables related by Bayes’ rule

P (m |d , ) =
P ( d | m ,  N s ) P ( m \ N s ) 

P ( d \ N s )
(1)

In Eq. (1), the posterior probability density (PPD), P(m|d), 
represents the state of information for the parameters 
incorporating both data information, P(d|m), and prior 
information, P(m). Interpreting the conditional probability 
P(d|m) as a function of m for the (fixed) observed data d 
defines the likelihood function Z(m) «  exp[-E (m )], where 

E  is the data misfit (log likelihood) function. Given the 
assumptions stated above, the likelihood is given by

Nr .
Z(x, a, v) = n ------ expi d /  - S a»d / (x *} l v .

1 I Nf \ I2 I— w r ----- —  e x p j - ^ | d ,  - D/ a , |  lv f  \ (2)

H  f= y vf } 7 f =1

where d/x*) represents the modelled acoustic fields for a 
unit-amplitude, zero-phase source at location \ s and Dy is an 
Nh by Ns complex matrix of acoustic fields defined

[D /  ]„ = [d f  (x, )],. (3)

Equation (2) canbe written L <x exp[-£] where the misfit 

function is given by

NF

£(x ,a, v) = ^ ^ d f  - Df  a f  |2 / v f  + N H logev/ ). (4)
f =i

Implicit sampling over source strengths and noise variances 
is derived by setting dE / 3af  = dE / dvf  = 0 to obtain ML 

estimates

» /  = (D/ D /  D /  d ;

v /  = N ,

(5)

where indicates Hermitean (conjugate transpose) and I is 
the identity matrix. Applying these in Eq. (4), the misfit can 
be written

nf

E(x) = N h ^ lo g . |[ i  -  D/ (DHf  D/ )-‘ DHf  ]d7 |",
f =i

(6)

Evaluating Eq. (6) for specific x automatically applies the 
ML solution for a and v, and hence accounts for the 
corresponding variability in source strengths and variances 
implicitly. This greatly reduces the dimensionality and 
improves the efficiency of multiple-source localization.

Determining the number of sources that contribute 
significantly to the acoustic field may be considered an 
application of model selection; i.e., seeking the most
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appropriate Ns given the measured data d. In Baye’s rule, 
Eq. (1), the conditional probability P(d|^s) may be 
considered the likelihood of Ns, and is referred to as the 
Bayesian evidence for Ns. Since the evidence serves as a 
normalizing factor in Bayes’ rule it can be written

P ( d \ N s ) = J P(d | m, N s ) P(m \ N s ) dm. (7)

Unfortunately, numerical solution of this integral is not 
practical for all models sampled in the localization 
algorithm. Rather, an asymptotic point estimate, the BIC, is 
applied here:

-2  log, P(d | N s ) -  BIC = -2  log, Z(A, N s ) + N s log, N d (8)

where in is the ML source location obtained by minimizing 
Eq. (6) and Nd is the number of data. As the BIC is based on 
the negative log likelihood, low BIC values are preferred. 
The first term on the right of Eq. (8) favours models with 
low misfits; however, this is balanced by the second term 
which penalizes unjustified free parameters. Minimizing the 
BIC provides the smallest number of acoustic sources which 
fits the data to within uncertainties, or, conversely, the 
largest number of sources resolved by the data.
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The multiple-source localization algorithm developed 
here optimizes over the number and locations of acoustic 
sources, as well as complex sources strengths and noise 
variance at each frequency, by minimizing the BIC. This 
minimization is carried out by applying heat-bath (Gibbs 
sampling) simulated annealing with fast cooling. Source 
locations are treated as explicit parameters, and source 
strengths and variances as implicit parameters. Each 
iteration of the simulated annealing process consists of 
Gibbs sampling each location parameter as well and an 
attempt to either add or remove a source. Sources are added 
by Gibbs sampling from the conditional probability 
distribution defined by the existing sources, and when 
sources are removed the remaining sources are Gibbs 
sampled to compensate for the change in acoustic fields. 
Implementation of the implicit formulation, Eq. (6), requires 
a large number of complex matrix inversions which are 
handled efficiently using a parallel implementation of 
Gauss-Jordan elimination that is stable without pivoting 
since the matrices are diagonally dominant.

3. EXAMPLE

This section presents a (simulated) example of the multiple- 
source localization algorithm involving 2 submerged 
sources and 3 louder near-surface interfering sources, with 
acoustic fields recorded at NF= 3 frequencies of 200, 300, 
and 400 Hz at a 24-hydrophone vertical array spanning a 
100-m water column. The ranges, depths, and signal-to- 
noise ratios (SNR, taken to be constant over frequency) of 
the sources are as follows: source 1 (8 km, 4 m, 10 dB), 
source 2 (3 km, 2 m , 8  dB), source 3 (5.5 km, 2 m , 6  dB),

Figure 1. Inversion results as a function of simulated annealing 
iteration for BIC, number of sources, and ranges and depths o f up 
to 6 sources (a maximum of 7 sources was allowed, but never 
accepted in the inversion). An absent source is assigned zero range 
and depth. The BIC is arbitrarily shifted so the minimum value 
corresponds to zero. Sources are ordered according to SNR. Dotted 
lines indicate true values.

source 4 (4 km, 30 m, 4 dB), and source 5 (6 km, 60 m, 0 
dB). The source search region is 0-10 km in range and 0­
100 m in depth, with from 1 to a maximum of 7 sources 
allowed in the search. This formulation includes a total of 
2Ns (1 +Nf)+Nf (real) unknowns (e.g., up to 51 for 6 
sources), of which 2^^ are treated as explicit parameters and 
the remaining as implicit parameters.

The results of the localization are shown in Fig. 1. The 
BIC drops quickly (although not monotonically) and the 
number of sources settles into the correct value of Ns =5  by 
about iteration 30 of the simulated annealing process. All 
source ranges and depths are correctly determined by about 
iteration 40, with the order in which the sources converge 
approximately following that of decreasing source SNR 
(i.e., the highest SNR source converges first, followed by 
the second highest, etc.).
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