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1. INTRODUCTION

Ocean acoustic reverberation modelling and sonar 
performance prediction in shallow waters require good 
estimates of seabed geoacoustic parameters and scattering 
parameters defining seafloor roughness. Direct 
measurements of these parameters are time consuming and 
expensive, and it may be advantageous to estimate in-situ 
seabed parameters based on indirect measurements, e.g., as 
the solution to an inverse problem. This paper develops a 
joint trans-dimensional (trans-D) Bayesian inversion 
approach which is applied to synthetic seabed scattering and 
reflection data with the goal of determining the ability of 
such data to resolve geoacoustic and scattering parameters.

2. METHOD

Bayesian inversion requires specifying the posterior 
probability density (PPD, product of the prior distribution 
and likelihood function), and a method to sample PPD. The 
remainder of this section gives an overview of the creation 
of the synthetic data and of the Bayesian inversion approach 
as it is applied here; more general and complete descriptions 
ofBayesian inversion are given elsewhere1,2.

2.1 Synthetic Data

The scattering data represent monotonie back-scatter 
strengths generated from Jackson’s perturbation-theory 
scattering model3 assuming a two-dimensional seabed 
roughness power spectrum (the von Karman spectrum)4

W (K ) = - v/2 (1)
( jK |2 + K  02 )”

where w2 is the spectral strength, K0 is the spectral cut off, 
and y is the spectral exponent. The vector K  is the 
transverse component of the incident wave vector (i.e. 
|K|=^ocos(0), where 6 is the incident grazing angle and k0 is 
the wave number in the ocean). Data were created over an 
angular range of 6-24° at six frequencies (600 Hz, 900 Hz, 
1200 Hz, 1800 Hz, 2400 Hz, and 3600 Hz). Gaussian- 
disturbed errors are added to the data which are correlated 
over angle but independent between frequencies.

The reflection data correspond to spherical reflection 
coefficients calculated recurvsively over a layered seabed5. 
Reflection data were generated over an angular range of 20
85° and averaged over 1/3-octave bands for six centre 
frequencies (630 Hz, 800 Hz, 1000 Hz, 1500 Hz, 2500 Hz, 
and 3600 Hz). The angular spacing between data points is

non-uniform and increases with angle from approximately 
0.3-10°, which is typical of experiment measurement 
techniques6. Data errors are positively correlated (over 
angle) with correlation between to data points decreasing 
exponentially with angular distance.

2.2 Posterior Probability Density

The PPD contains all information considered in Bayesian 
inversion, and can be expressed using Bayes rule as 

L (d | m ) ïï(m, )
PPD (m . | d) = (2)

where £  is the likelihood function, % is the prior distribution, 
and f  the evidence. The vectors d and m,- represent the data 
and the model parameters, where subscript^ indicates the 
model dimension which is variable in trans-D inversion. 
Here the number of sediment layers is treated as unknown 
and sampled in the inversion.

The prior distribution represents information known about 
the model before the introduction of the data. The prior 
distribution used here is 

( j  - 1)!
TCM) (AcApAa)J

(3)

where Ac, Ap, and A a are the range of possible sound 
velocity, density, and attenuation values for a given 
sediment layer; H  is a  normalizing constant that accounts for 
the assumed correlation between geoacoustic parameters; zB 
is depth of the basement. The prior distribution can be 
formulated proportionally since Bayesian inversion 
considers only the ratio of prior distributions. The remaining 
parameters, such as w2, K0, and y have uniform priors and 
are absorbed by the proportionality.

The likelihood function describes both the physics (forward 
model) and the data error statistics assumed in the inversion. 
As this work describes a simulation study, the same forward 
model and data error statistics used to create simulated data 
are assumed in the inversion.

2.3 Sampling Scheme

It is not in general possible to interpret the PPD in an 
analytic manner. Thus in Bayesian inversion it is common 
to sample the PPD using Markov-chain Monte Carlo 
algorithms; here, the reversible-jump Markov-chain Monte 
Carlo (rjMCMC) algorithim7 with parallel tempering8 is 
used. The sampled PPD is then interpreted in terms of its
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FIG. 1. Top: one-dimensional marginal posterior distributions of the scattering parameters. Bottom: two-dimensional marginal 
posterior distributions of the scattering parameters. The horizontal and vertical lines indicate the true value.

8

moments, parameter uncertainties (variances, marginal 
distributions, credibility intervals), and parameter inter
relationships (correlations and joint marginal distributions).

To adequately approximate the PPD 600,000 models were 
sampled from it using the rjMCMC algorithm. These are 
thinned by one third to reduce sample correlation; only 
these remaining samples are considered here.

3. RESULTS

The one- and two-dimensional marginal distributions of the 
scattering parameters (w2, K0, and y) for the inversion are 
shown in Fig. 1. The parameter distributions are centred 
near the true values, and the uncertainties indicate a useful 
level of resolution of the roughness spectrum. Geoacoustic 
parameters are also well resolved, but are not shown here 
due to space constraints. This work indicates that Bayesian 
inversion is an adequate way of determining the acoustic 
scattering properties of marine sediment.
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