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ABSTRACT 
 
This paper investigates theoretically how duct geometry and liner thickness affect the attenuation of fundamental-mode 
sound propagation in a lined duct. The study was done to satisfy the need for a greater understanding of interior natural-
ventilation openings and of silencers implemented to improve the acoustical performance (‘ventilators’), and to provide 
engineers and architects with optimal-design guidelines. It assumed ventilators of the simplest form – straight, acoustically-
lined ducts of rectangular cross-section. An analytical solution is presented for the attenuation of the fundamental mode in 
such a duct. Duct-liner thickness does not affect high-frequency performance; however, it limits low-frequency performance. 
A 25-mm liner is likely not thick enough to be effective, but a 100-mm liner may be excessive. Increasing the duct height 
reduces the attenuation at all frequencies; in order to provide effective attenuation through the 4000-Hz band, the height 
should not exceed 100 mm. If the cross-sectional aspect ratio of a duct is greater than 10, or the duct is only lined on two 
opposing surfaces, the attenuation of its fundamental mode is in effect identical to that of a 2D lined duct. Provided that the 
duct liner and height are such that the silencer is effective at absorbing sound at a given frequency, reducing the aspect ratio 
towards unity will result in large attenuation gains. 
 
 

RÉSUMÉ 
 
Cet article étudie l’influence théorique de la géométrie d’un conduit et de l’épaisseur d’un revêtement acoustique sur 
l’atténuation acoustique du mode fondamental. L’étude vise une meilleure compréhension des ouvertures dans les cloisons 
internes et des silencieux conçus pour améliorer la performance acoustique, afin d’informer les ingénieurs et les architectes 
des conceptions optimales. Elle fait l’hypothèse de silencieux de formes simples: un conduit rectangulaire avec un revêtement 
acoustique interne. Une solution analytique est présentée pour l’atténuation du mode fondamental de ce type de conduit. 
L’épaisseur du revêtement n’influence pas sur les performances à hautes fréquences; cependant, elle limite celles à basses 
fréquences. Un revêtement d’une épaisseur de 25 mm n’est pas efficace, mais 100 mm peut être excessif. Augmenter la 
hauteur du conduit réduit l’atténuation pour toutes les fréquences; dans le but d’obtenir une atténuation efficace aux 
fréquences supérieures à 4000 Hz, la hauteur ne devrait pas dépasser 100 mm. Si le rapport des dimensions latérales du 
conduit est supérieur à 10, ou si seulement deux surfaces opposées portent un revêtement, l’atténuation du mode fondamental 
est égale à celle d’un conduit 2D. Tant que le revêtement et les dimensions du conduit sont tels que le silencieux 2D absorbe 
efficacement le son à une fréquence particulière, une réduction du rapport résultera en une atténuation plus importante. 
 
 
 
1. INTRODUCTION 

This paper investigates theoretically how duct geometry 
and liner thickness affect the attenuation of fundamental-
mode sound propagation in a lined duct. While the results 
are generally applicable, the work was done as part of larger 
study [1] to satisfy the need for a greater understanding of 
interior natural-ventilation openings and of silencers 
implemented to improve the acoustical performance 
(‘ventilators’), and to provide engineers and architects with 
optimal-design guidelines. 

Natural ventilation is increasingly employed to make 
buildings more sustainable [2]. It works by using wind- or 
buoyancy-induced pressure differentials (stack effect) to 
drive ventilation air through a building. Typically these 
pressures are small compared to those available in a 

mechanically-ventilated building. In order for this low 
pressure to drive a sufficient volume of air, it is necessary to 
have low airflow resistance throughout the building. To 
achieve this, large openings are created in internal 
partitions, which prove detrimental to the noise isolation 
between the spaces. There is a clear need for a greater 
understanding of interior natural-ventilation openings and of 
silencers implemented to improve their acoustical perfor-
mance, in order to provide engineers and architects with 
optimal design techniques.  

This paper assumes silencers of the simplest form – a 
straight, lined duct of rectangular cross-section.  An 
analytical solution exists for the attenuation of the 
fundamental model in such a duct [3, 4]. In straight sections 
of lined silencers, the attenuation of the fundamental mode 
generally governs the performance, because it is the least 
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attenuated [4]. This paper presents the analytical solution 
and uses it to investigate the effect of silencer geometry on 
the resulting attenuation. 
 
 
2. GENERAL CARTESIAN SOLUTION 

In rectangular ducts, since the geometries are made of 
planes defined by simple Cartesian coordinates, it is useful 
to use the wave equation in Cartesian coordinates. The 
linear wave equation for sound pressure p can be written as: 
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where c is the sound speed. Using separation of variables to 
find solutions, the pressure can be expressed as the product 
of three spatially-dependent functions and a time-dependent 
function: 
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By inserting this assumption into the wave equation, the 
spatially-dependent variables can be separated from the 
time-dependent variable, creating multiple ordinary differ-
ential equations from the single partial differential equation: 
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where sx + sy + sz = s. Differential equations of this form can 
take the following solutions: 
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Our interest is in the harmonic solution, for which sx, t < 0. It 
is convenient and informative to introduce the wave number 
k and angular frequency ω. Letting -sx = kx

2c2 and –s = ω2, 
the general Cartesian solution can be written as: 
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This solution represents waves, with some amplitudes and 
wave numbers, propagating in the positive and negative 
directions along each axis, and propagating in both 
directions with respect to time.  
 
 
3. RIGID-WALLED DUCT 

In an infinite-length duct, or equivalently in a duct with 
an anechoic termination, waves will not propagate in the –z 
direction. Waves travel forward with unit amplitude as time 
increases. With these restrictions, the general solution 
becomes: 
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Taking the cross-section of the duct to extend from 0 to Lx 
in x, and 0 to Ly in y, the Neumann condition is applied to 
the rigid duct walls: 
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Using these boundary conditions, and the general solution, a 
modal solution can be presented as: 
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By letting kl

2 + km
2 = klm

2, and solving for the wave number 
in z, some properties of the system become apparent: 
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For relatively high frequencies, or ducts of large cross-
section with respect to a given mode, the pressure fluctuates 
sinusoidally with z: 
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When the frequency becomes low, or the duct is small with 
respect to a given mode, the wave number becomes 
complex, resulting in a pressure that decays exponentially 
with increasing z. This defines the cut-off frequency for a 
mode in a duct. The only mode that does not have a cut-off 
frequency is the plane-wave mode (l = 0, m = 0): 
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4. NON-RIGID-WALLED DUCT 

If a duct does not have rigid walls, the Neumann 
boundary condition becomes invalid. If the normal-
incidence surface impedance is known, then the boundary 
condition can be replaced with: 
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Applying Newton’s second law to an element of fluid, the 
particle velocity can be related to pressure: 
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Assuming that ux and uy have solutions that vary sinusoid-
ally with time, it follows that: 
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Solving for the impedance at the duct walls (hx, -hx, hy, -hy): 
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If the impedances of opposite walls are equal, the 
simplifying assumption can be made that the propagating 
modes will be either symmetric or antisymmetric [3]. For 
symmetric-mode propagation: 
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For antisymmetric-mode propagation: 
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Re-written, the system of equations for a duct in which 
opposite walls have the same impedance is: 
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These two sets of equations can be solved numerically to 
find kz as a function of k (k is directly related to frequency). 
A numerical-iteration scheme, such as the Newton-Raphson 
method, can be used to find the roots of, and solutions to, 
these equations. 

One important observation from this analysis is that, if 
the wall impedance is not infinite, the wavenumbers will be 
complex. If the wavenumber in z is complex, the pressure 
variation p3 with respect to the duct length can be written: 

 
     zkzkj zz eeAzp ImRe

53
  

 
This result shows that the modal pressure decays expo-
nentially along the length of the duct. The attenuation can be 
conveniently expressed in decibels as: 
 

Attenuation       dBIm686.8logIm20 zkezk zz   
 
4.1  Defining the Surface Impedance 

A solution for the plane-wave attenuation in a lined 
duct has been presented; however, the surface impedance of 
the absorptive liner must be known. The transfer-function 
method is presented here as a simple method for converting 
an absorptive material’s characteristic impedance and wave 
number into a surface impedance. A brief background is 
also given on absorptive materials, to describe how the 
propagation impedance and wavenumber are determined.  
 
4.1.1  Transfer-function method 

In order to use the propagation impedance and 
wavenumber for design in typical applications, they must be 
converted into an equivalent surface impedance [5, 6]. The 
transfer-function method is convenient for this purpose. It 
starts by defining the pressure and velocity at positions x = 0 
and x = d as functions of the forward and backward 
propagating waves. These four equations are then 
rearranged to relate the pressure and velocity at x = d to 
those at x = 0 by a general ‘transfer function’: 
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Subscript x indicates the component of the variable in the x 
direction. Combining these equations gives: 
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which can be equivalently expressed in matrix form as: 
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[T] is the transfer matrix for a finite-thickness layer. 
Transfer matrices can be defined for many simple geo-
metries, and are multiplied together to find the total transfer 
functions of compound layers and geometries. Here, we see 
that, if we let the surface impedance at x = d be Zs,x(dx), we 
can solve for the surface impedance at x = 0, Zs(0): 
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If the layer is backed by a rigid surface, then Zs,x(dx) is 
effectively infinite and the surface impedance can be 
simplified to: 
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This result can be used, in combination with Eqs. (1), to 
define the surface impedance of a duct, provided the 
propagation impedance and wavenumber, Z0 and k respect-
tively, are known for the porous absorber. For clarity, from 
here on the characteristic impedance and wavenumber of the 
porous absorber are identified as Zw and kw. The symmetric 
equations are: 
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This formulation allows for arbitrary incidence angle; 
however, kw,x must be found using Snell’s law, as refraction 
occurs due to the difference in wave speeds in air and in a 
porous absorber. With ψ and φ being the incident and 
transmitted angles, kw,x is [5]: 
 

    sinsin1 22
, kkkk wwwx   

 
In practice, the wave speeds in many porous materials are 
much smaller than in air; thus the waves propagate nearly 
normal to the surface [7]. Considering this effect, kw,x ≈ kw. 
Materials in which sound will only propagate normal to the 
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surface are referred to as ‘locally reacting’. The surface 
impedance of a rigidly-backed, locally-reacting absorber is: 

 
)cot(, xwwxs dkjZZ   

 
The local-reaction assumption is valid provided R < 4 [7], 
where R is the normalized flow resistance, given by: 
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in which σ is the flow resistivity in MKS Rayl/m. 
 
4.1.2  Characterizing porous absorptive materials 

Porous acoustical absorbers are materials that absorb 
sound energy passively by means of thermal dissipation. As 
sound waves propagate through the porous material, the 
shear forces due to no-slip conditions at the absorber surface 
convert the kinetic energy into heat. In addition, the high 
surface area in the porous material makes the compression 
process non-adiabatic. 

Porous absorbers are, as shown above, most usefully 
described in terms of their acoustical propagation 
impedance and wavenumber. Many methods, both empirical 
and analytical, have been developed to determine the 
acoustical impedance, based on material properties [5, 7]. 
Analytical methods, based on models of the microscopic 
fluid domain, have proven successful; however, they are 
quite complicated compared to empirical methods. 
Empirical methods, such as the well-known Delaney-Bazley 
model [5], provide a simple method for calculating the 
impedance from easily measured properties.  

The Delaney-Bazley model is based on a data curve-fit 
of many samples of fibrous acoustical absorbers with 
different flow resistivities; therefore, it should not be 
expected to give accurate results for non-fibrous absorbers, 
such as open-cell foams. The acoustical impedance and 
wavenumber of a fibrous porous absorber are [5]: 

 
732.0754.0

0

087.00571.01   XjX
Z
Zw  

 595..0700.0

0

189.00978.01   XjX
c

kw
  

 
X is a function of the flow resistivity σ and frequency f: 
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X 0  

 
The Delaney-Bazley model is a single log-linear curve fit of 
the real and imaginary components of the impedance and 
wavenumber, to represent all fibrous absorbers. It is valid 
when [5]: 
 
 

 ε (porosity) ≈ 1 
 0.01 < X < 1.0 
 1000 < σ < 50,000 MKS Rayl/m. 
 
 
5. RESULTS 

To investigation plane-wave attenuation in a lined duct, 
it is necessary to define realistic liner properties. For this 
analysis, a liner was defined to have properties similar to the 
material used in laboratory-measured cross-talk silencers 
[2]. Once a lining material was established, the effect of 
geometry on attenuation was investigated. 
 
5.1 Duct-Liner Properties 

To use the Delaney-Bazley method of describing the 
porous material, it is necessary to define the material’s flow 
resistivity. This was done by selecting a flow resistivity that, 
using the Delaney-Bazley model and transfer-function 
methods, defines a material with a similar normal-incidence 
absorption coefficient a to that of the liner used in labora-
tory measurements [1]. Using the pressure-reflection coef-
ficient r, the normal-incidence coefficient can be calculated 
from the surface impedance: 
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The normal-incidence absorption coefficient of a 25-mm-
thick OEM glass-fiber sample was measured using an 
impedance tube and a standardized measurement procedure 
[8]. A comparison between the measured glass-fiber 
material and Delaney-Bazley prediction for different flow 
resistivities is shown in Figure 1. Data above 2000 Hz could 
not be obtained, due to impedance-tube limitations.  

 

 
Figure 1: Absorption coefficient of 25-mm-thick OEM glass fiber 
as measured, and as predicted by the Delaney-Bazley model for 

different flow resistivities, σ in MKS Rayl/m. 
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Figure 2: Variation of normal-incidence absorption coefficient for 

various liner thicknesses as predicted by the Delaney-Bazley 
model with σ = 60,000 MKS Rayl/m. 

Above 500 Hz, the predicted absorption agrees best 
with the measurement when the flow resistivity is 60,000 
MKS Rayl/m; however, below 500 Hz the Delaney-Bazley 
model under-predicts the measured absorption. Using a 
higher flow resistivity would slightly increase the low-
frequency absorption; however, it would step outside of the 
range of validity of the local-reaction assumption. Direct 
measurements of the OEM glass fiber showed the flow 
resistivity to be 46,000 MKS Rayl/m [9]. In summary, 
reasonable normal-incidence-absorption agreement occurs 
for σ = 60k MKS Rayl/m. 

The absorption is also strongly dependent on the liner 
thickness. Using a material with a flow resistivity of 60,000 
MKS Rayl/m, the Delaney-Bazley model was used to 
calculate the absorption coefficient of a layer of glass fiber 
with varying thickness. The results are shown in Figure 2. 
All liner thicknesses generally provide increased absorption 
with increasing frequency. Above 1 kHz, all three liners 
have high absorption. Decreasing liner thickness results in 
decreased absorption at low frequency. The 25-mm liner is 
effectively incapable of absorbing in the 125-Hz octave 
band; only modest absorption is achieved in the 125-Hz 
band with a 100-mm liner. 
 
5.2 Cross-Sectional Dimensions 

To optimize the performance of a straight section of 
lined duct, one must consider the effect of the silencer flow-
path dimensions, lining thickness and the acoustical proper- 

 

 
Figure 3: Silencer dimensions. 

 
Figure 4: Predicted attenuation rate for various duct heights (hy) 

and liner thicknesses (dy). 

ties of the liner. The height and width of the flow cavity in 
the silencer both have great effects on the acoustical 
attenuation; the cross-sectional geometry was examined by 
looking at the effects of flow-path height and aspect ratio, 
and how the behaviour depended on liner thickness. As 
required for Eqs. (3), the silencer height was equal to 2hy, 
and the liner thickness was dy (Figure 3). The plane-wave 
attenuation was determined by solving Eqs. (1) and (2) 
using the Newton-Raphson numerical-iteration scheme. 
 
5.2.1  Flow-path height 

To examine the effect of flow-path height, a 2D silencer 
was studied. Attenuation of the fundamental mode in a 2D 
silencer is identical to that in a 3D silencer with: a. the same 
height, and with width much larger than the height; b. the 
same height and any width, but lined only on the top and 
bottom surfaces. 

Figure 4 shows the attenuation rate in dB/m of the first-
order mode in a duct with varying height and absorber 
thickness, plotted against frequency. If the attenuation rate 
(already a logarithm of power)  is  plotted  on  a  logarithmic 

 
Figure 5: Predicted attenuation rate for various duct heights (hy) 

and liner thicknesses (dy), with attenuation rate plotted on a 
logarithmic scale. 
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Figure 6: Predicted attenuation rate for various duct aspect ratios 

(AR): hy=50 mm, hx=hy·AR, dy=dx=25 mm. 

scale with  respect to frequency, the relationships are better 
illustrated (see Figure 5). 

It is apparent that, at low frequencies, the attenuation 
rate is governed by the absorber thickness. Below 1000 Hz 
the performance of the silencer with a 25-mm liner falls off 
relative to those of the 50- and 100-mm liners. Likewise, 
below 250 Hz the attenuation with 50-mm liner falls off 
with respect to that of the 100-mm-thick liner. This result is 
consistent with the normal-incidence absorption-coefficient 
results shown in Figure 2.  

Above 250 Hz, for the 50-mm liner, and above 1000 Hz 
for the 25-mm liner, the attenuation rate is not governed by 
the thickness of the liner (although it may be affected by the 
flow resistivity). In this region the attenuation rate is limited 
by the rate at which energy in the fundamental mode 
diffracts into the absorptive material. In all cases, the 
frequency at which the attenuation is maximized is very 
close to the frequency at which the wavelength is equal to 
the duct height (2h). 
 
5.2.2  Flow-path aspect ratio 

In the previous section the relationship between duct 
height and attenuation was investigated. To calculate the 
fundamental-mode attenuation, a 2D duct, equivalent to a 
duct with infinite width or a duct only lined on two oppos-
ing surfaces, was investigated. This section investigates the 
effect on the attenuation of the fundamental mode of a duct 
of varying the aspect ratio, with all four walls acoustically 
lined. Figure 6 shows the effect of varying the aspect ratio 
of a lined duct with a 0.1-m total internal height, and all four 
walls lined with 25-mm-thick absorptive material. As 
expected, if the aspect ratio is large (AR>10), the result is 
effectively identical to that of the 2D solution. As the aspect 
ratio decreases, there is an increase in attenuation. The 
increase in attenuation due to a reduction in AR appears to 
be directly related to the original attenuation – that is, if the 
2D silencer has negligible attenuation, reducing the AR will 
not result in significant attenuation. If a 2D silencer has 
significant attenuation at a given frequency, a silencer with 

 
Figure 7: Predicted attenuation rate for various aspect ratios (AR): 

hy=50 mm, hx=hy·AR, dy=dx=50 mm. 

the same height, but AR = 1, will have greatly increased 
attenuation. Figures 7 and 8 show the same result for ducts 
with 50- and 100-mm-thick absorptive liners. The same 
results are observed for all liner thicknesses; however, as 
before, the attenuation rates are more pronounced at lower 
frequencies for thicker liners. 

The increase in the attenuation of a lined duct with a 
small aspect ratio should be expected. With a 2D duct the 
wavefront will form a 2D arc as it diffracts into the liner. 
Because the length of an arc increases in proportion to the 
arc radius, the maximum energy-attenuation rate is inversely 
proportional to the radius. In a 3D duct with AR = 1, the 
wavefront will approximate the spherical end of a 3D cone 
as it diffracts into the liner. The area of a sphere increases in 
proportion to the radius squared; therefore the maximum 
attenuation is inversely proportional to the radius squared. 
As attenuation rate is expressed on a logarithmic scale, the 
attenuation rate in a duct with an aspect ratio of 1 is twice 
that in a 2D duct (or, equivalently, with AR>10) with the 
same height. Figures 6, 7 and 8 suggest that the attenuation 
rate with AR = 1 is indeed nearly twice the 2D value for any 
duct configuration and frequency. 

 

 
Figure 8: Predicted attenuation rate for various aspect ratios (AR): 

hy=50 mm, hx=hy·AR, dy=dx=100 mm. 
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6. CONCLUSION 
Through comparison of the absorption coefficients, it 

was determined that a fibrous material with a flow 
resistivity of 60,000 MKS Rayl/m, as defined by the 
Delaney-Bazley model, has similar acoustical performance 
to the glass-fiber liner used in laboratory measurements [1]. 
Using this material, with an analytical solution for plane-
wave attenuation in a lined duct, the effects of varying the 
duct’s cross-sectional dimensions have been analyzed, 
providing information about how liner thickness, duct 
height and duct aspect ratio affect attenuation.  

Duct-liner thickness does not affect high-frequency 
performance; however, it limits low-frequency performance. 
The performance of a 25-mm liner falls off below 1000 Hz; 
that of a 50-mm liner falls off below 250 Hz. From 
ventilation-opening laboratory measurements [1], it was 
observed that the performance of natural-ventilation-
opening silencers is often limited by the 500-Hz frequency 
band. This result was based on the assumption that the 
sound that natural-ventilation-opening silencers are required 
to attenuate is speech. As a result, a 25-mm liner is likely 
not thick enough to be effective; however, a 100-mm liner 
may be excessive. Increasing the duct height reduces 
attenuation at all frequencies; however, if the frequency is 
high enough, or the duct is large enough that the wavelength 
is shorter than the duct height, the attenuation decreases 
rapidly. In order to provide effective attenuation through the 
4000-Hz band, the duct height should not exceed 100 mm. 
In the case of using ducts as silencers in natural-ventilation 
openings to control the propagation speech sounds, smaller 
duct heights may be more appropriate than in the case of 
ducts silencers controlling lower-frequency mechanical-
ventilation noise. 

If the aspect ratio of a duct is greater than 10, or it is 
only lined on two opposing surfaces, the attenuation of its 
fundamental  mode  is,  in effect,  identical  to that  of  a 2D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

duct. 
Provided the duct liner and dimensions are such that the 

2D silencer is effective at absorbing sound at a given 
frequency frequency, reducing the aspect ratio to near unity 
results in large attenuation gains. The attenuation rate of a 
lined duct with AR=1 is approximately twice that of a 2D 
lined duct. 
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