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Abstract
Vocal fold vibration has been extensively investigated using numerical simulation through the use of lumped element models,
and more recently, through the use of finite element continuum models. Finite element models offer the ability to analyze the
effects of detailed and complex geometric models, allowing for the study of the influence of pathologies and phonosurgery
on the process of phonation. The present study details the development of a finite element code of vocal fold vibration and a
continuum model of a vocal fold with a sessile polyp. The capability of the code to capture major structural vibration trends
are illustrated through a validation process, wherein previously explored models are replicated, and computed results are sub-
sequently compared to gauge the code’s efficacy. An overview of literature pertinent to the modeling of vocal fold polyps is
presented, followed by the discussion of the creation of a continuum model of a vocal fold affected by a sessile polyp. This
pathological model is parameterized according to the size and position of the polyp, and trends are explored based on varying
these parameters. Polyp size is concluded to have a more profound influence on the fundamental frequency of vibration than
position. An inversely proportional relationship is found between polyp size and fundamental frequency, as well as proximity
to the anterior-posterior surface and fundamental frequency.
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Résumé
Les vibrations des cordes vocales ont été étudiées extensivement par simulation numérique grâce à l’utilisation des modèles de
paramètres localisés et, plus récemment, grâce à l’utilisation des modèles des éléments finis. Les modèles des éléments finis
offrent la possibilité d’analyser les effets des modèles géométriques complexes et détaillés, facilitant ainsi l’étude de l’influence
des pathologies et phonochirurgies sur le processus de phonation. Cette étude décrit le développement d’un code utilisant des
éléments finis afin d’analyser les vibrations des cordes vocales. L’étude a aussi développé un modèle de continuum d’une
corde vocale avec un polype sessile. La capacité du code à saisir les tendances importantes des vibrations structurelles est
illustrée par un processus de validation, où des modèles existants sont répliqués et les résultats calculés sont comparés pour
évaluer l’efficacité du code. Une révision de la littérature pertinente sur la modélisation des polypes sur les cordes vocales
est présentée, suivie par une discussion sur la création d’un modèle de continuum d’une corde vocale avec un polype sessile.
Ce modèle pathologique a été étudié en fonction de la taille et de la position du polype, et les tendances on été étudiées en
fonction de ces paramètres. La taille du polype s’est avérée avoir une plus grande influence sur la fréquence fondamentale de la
vibration que la position sur la corde vocale. Une relation inversement proportionnelle a été trouvée entre la taille du polype et la
fréquence fondamentale, ainsi qu’une relation inversement proportionnelle entre la proximité de la surface antérieur-postérieur
et la fréquence fondamentale.

Mots clefs: Cordes vocales, Polypes, Vibrations structurelles, Méthode des éléments finis

1 Introduction
Accurate simulation of structural vibration is dependent on a
proficient formulation of a system’s equation of motion. The
proficiency of such a method is complex to assess for dis-
crete models which are subject to numerous errors stemming
from discretization, efficiency concerns, and representation
of the physical system itself. Models of vocal fold vibration
are susceptible to these issues, and as a result, multiple mo-
dels have been developed which attempt to predict compa-
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rable vibration behaviour through various formulation tech-
niques. These models have advanced with the introduction of
continuum models [1–8], which distinguish themselves from
traditional lumped element models [9–11] by virtue of their
ability to incorporate the effects of complex spatial geome-
tries on vibration behaviour. Notably, continuum models of-
fer an avenue for detailed study of the effects of pathologies
on vibration, such as polyps, nodules, and asymmetries.

An early and seminal two-mass lumped element model
of vocal fold vibration was developed by Ishizaka and Flana-
gan [9]. This model approximated vocal folds as two masses
coupled by springs and viscous dampers which were subject
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to aerodynamic forces, modeled by Bernoulli flow. The model
exhibited realistic self-oscillation properties previously ob-
served only in experimental studies, such as the phase shift
in motion between the upper and lower vocal fold edges [9,
p. 1266]. The two-mass model was subsequently adopted for
the study of the effect of pathologies on the generation of a
speech signal, such as asymmetries [12–15] and polyps [16].
Though these models have generated comparable results to
in-vivo studies, their use is limited to simulations which for-
feit thorough physiological representation in exchange for
computational efficiency. Developments of the two-mass mo-
del have, however, improved on spatial resolution and refined
viscoelastic characterization [10, 11, 17].

Continuum models of laryngeal structure and flow have
improved accuracy by virtue of refined and detailed discre-
tization. One such complex vocal fold finite element (FE)
model was developed by Alipour et al. [1], which conside-
red a three-dimensional model of a vocal fold. This model
uses distinct material properties for the body, cover, and li-
gament tissues, and approximates fluid interactions through
Bernoulli flow. Oliveira Rosa et al. [2] expanded on this mo-
del by incorporating the entire larynx, adding longitudinal
degrees of freedom, modeling tissue collisions, and mode-
ling flow with the unsteady Navier-Stokes equations. Further
extensions of the computational fluid-structure models have
been made by incorporating the solution of the acoustic do-
main, as in [5], wherein a slightly compressible fluid model
was used to capture the effects of the compressibility of air on
acoustic wave propagation. Subsequent finite element method
(FEM) models have examined pathological effects, including
vocal trauma risk [18, 19], nodules [3], and asymmetries [20]
which complement similar experimental studies [21]. Fur-
thermore, continuum models provide the means for explora-
tion of the governing physics of self-oscillation. Gunter [6]
made use of a finite element vocal fold model to validate pre-
diction of vocal fold closure forces and kinematics, drawing
relationships between sub-glottal pressure and contact force,
area of contact, and medial motion, followed by a similar ex-
perimental study [22]. Thomson [8] explored the mechanisms
of aerodynamic energy transfer to the vocal folds through the
use of both experimental and computational models, quanti-
fying viscous effects and asymmetries in wall pressure due to
cyclic vocal fold profile variations.

Advancement of computational vocal fold models re-
quires consideration of realistic geometric and viscoelastic
characterization. One such study deviates from the use of
idealized vocal fold geometries through generation of a mesh
using MRI image slices and various tissue property values
[4]. In addition, experimental determinations of vocal fold
material property value ranges have been performed to im-
prove the characterization of vocal fold layer anisotropy [23].
The necessity of these realistic models has been explored
through sensitivity studies, which asses the effects of both
geometric and material idealizations in computational mo-
dels on mechanical response. Shurtz and Thomson [7] per-
form one such study in which they assess the effects of the

vocal fold collision contact line position, Poisson ratio, and
symmetry conditions on the fluid and structural response.

Overall, these computational models of vocal fold vibra-
tion have illustrated the ability to predict similar trends of vi-
bration which agree with experimental studies. A natural pro-
gression in improving these models is the investigation of the
effects of pathologies on these trends, specifically, with de-
tailed modeling of the pathological geometry. The following
study is an attempt to validate an in-house FE formulation of
the vibration of vocal folds affected by a sessile polyp which
is resolved with an in-house solver. This validation is perfor-
med as part of the development of a predictive tool intended
for further investigations of the effects of pathological tissue
on vocal fold vibration. The FE method is used to formulate
the equation of motion of the system, and considering free vi-
bration conditions, resolve the system for natural frequencies
and mode shapes. These results are subsequently compared
with investigations by [24–26]. This validation process is cri-
tical for future investigations which will make use of this tool,
since experimental data for pathological speech may not pro-
vide a precise metric as a comparison.

2 Discretization and Structural Modeling
The equations of motion of a physical system may be derived
using Hamilton’s principle, which states∫ t2

t1

(δ(T − U) + δWnc)dt = 0 (1)

where t1 and t2 represent time at two distinct points, δ de-
notes a virtual variable, T is the kinetic energy of the system,
U is the strain energy of the system, and Wnc represents the
work done to the system by non-conservative forces [27, p.
9]. This principle describes the path of a conservative sys-
tem between two discrete positions given the system’s scalar
energy functions. For discretized systems, equation (1) can be
simplified using Lagrange’s equations, given by{

∂
∂t

(
∂T
∂q̇(t)

)}
= [M ] {q̈(t)}{

∂D
∂q̇(t)

}
= [C] {q̇(t)}{

∂U
∂q(t)

}
= [K] {q(t)}

(2)

where {q(t)} is a vector of system displacements, {q̇(t)} is
a vector of system velocities, {q̈(t)} is a vector of system
accelerations, [M ] is the matrix of inertia, D is a dissipation
energy function, [C] is the damping matrix, and [K] is the
matrix of stiffness [27, p. 13]. The set of Lagrange’s equations
can be used to develop the equation of motion for the discrete
system given the scalar energy functions, which is given by

[M ] {q̈(t)}+ [C] {q̇(t)}+ [K] {q(t)} = {F} (3)

where {F} is the vector of applied non-conservative forces
on the system. For the present study, discrete systems un-
der free-vibration are considered. Free-vibration conditions
ignore damping and applied forces. Substituting these condi-
tions into equation (3),

[M ] {q̈(t)}+ [K] {q(t)} = 0. (4)
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This system of equations can be developed by evaluating
equation (2) given the kinetic and strain energy functions of
the system.

The kinetic energy function for a general three-
dimensional solid is given by

T =
1

2

∫
V

ρ(u̇2 + v̇2 + ẇ2)dV (5)

where V is the volume of the solid, ρ is the density, and u, v,
and w represent displacement components in x,y,z Cartesian
space, respectively [27, p. 39]. The strain energy function for
a general three-dimensional solid is given by

U =
1

2

∫
V

{ε}T [D] {ε} dV (6)

where {ε} is the strain component vector given by

{ε}T =

{
∂u

∂x
,
∂v

∂y
,
∂w

∂z
,
∂u

∂y
+
∂v

∂x
,
∂u

∂z
+
∂w

∂x
,
∂v

∂z
+
∂w

∂y

}
,

(7)
and [D] is the stiffness matrix of the solid, which can be com-
puted as the inverse of the compliance matrix given by Hoo-
ke’s law for linearly elastic materials [27, p. 38]. For systems
with varying boundary conditions or complex geometries, the
energy functions are difficult to derive analytically, and accor-
dingly, the Finite Element Displacement Method (FEDM) is
used to approximate each function over discrete volumes of
space.

The FEDM approximates the energy functions over ele-
ments, which are defined by a collection of Cartesian nodal
coordinates, represented as the column vectors {u}e, {v}e,
{w}e. Each node of the element, unless constrained by a
boundary condition, has three translational degrees of free-
dom. These displacement and velocity components are ap-
proximated by shape functions, and subsequently used to eva-
luate equations (5) and (12). For an element defined by n
nodes, there must exist n shape functions. Each shape func-
tion must have a value of unity at its corresponding node, and
a value of zero at all other nodes. Displacement functions can
be defined based on the set of shape functions, [N ], and the
nodal coordinates,

u = [N ] {u}e
v = [N ] {v}e
w = [N ] {w}e

(8)

or  u
v
w

 = [N ] {q(t)}e (9)

Equation (9) can be substituted into equations (5) and (12)
and integrated, resulting in

Te = 1
2 {q̇(t)}

T
e [m]e {q̇(t)}e

Ue = 1
2 {q(t)}

T
e [ke {q(t)}e

(10)

where [m]e is the inertia matrix of the element and [k]e is
the stiffness matrix of the element [27, pp. 103-104]. Re-
arranging equation (10),

[m]e =
∫
Ve
ρ[N ]T [N ]dV

[k]e =
∫
Ve

[B]T [D][B]dV
(11)

where [B] is the strain matrix of the form [27, p. 200]

[B] =



∂N1

∂x 0 0 · · · ∂Nn

∂x 0 0

0 ∂N1

∂y 0 · · · 0 ∂Nn

∂y 0

0 0 ∂N1

∂z · · · 0 0 ∂Nn

∂z

∂N1

∂y
∂N1

∂x 0 · · · ∂Nn

∂y
∂Nn

∂x 0

∂N1

∂z 0 ∂N1

∂x · · · ∂Nn

∂z 0 ∂Nn

∂x

0 ∂N1

∂z
∂N1

∂y · · · 0 ∂Nn

∂z
∂Nn

∂y


.

(12)
Equation (11) is evaluated for each element based on the gi-
ven nodal coordinates and shape functions. The elemental
inertia and stiffness matrices are subsequently added to the
global equation of motion, equation (4). The global equation
of motion is fully assembled once all elemental inertia and
stiffness matrices are computed and added to the equation.

2.1 Tetrahedral shape functions
The evaluation of equation (11) can be performed analyti-
cally for a four-node tetrahedron because the entries in [N ]
are constants, and consequently, result in constant strain en-
tries in [B]. Accordingly, the four-node tetrahedral elements
are called ”constant strain elements”. Equation (11) was de-
rived analytically for the constant strain elements using the
Matlab symbolic toolbox [28], and subsequently evaluated as
functions of the nodal coordinates. The ten-node tetrahedron
elements have linear strain entries in [B], and accordingly,
require a numerical integration method to evaluate equation
(11). Consequently, ”linear strain elements” will approximate
strain gradients more accurately than the constant strain ele-
ments, in exchange for computational efficiency.

2.2 Numerical integration of elemental inertia and
stiffness matrices

Evaluation of equation (11) for linear strain elements was per-
formed with four-point Gauss-Legendre quadrature. This in-
tegration scheme approximates a definite integral through the
sum of weighted samples within the domain of integration.
For a definite integral I , [29, p. 373]

I =

∫ 1

0

∫ 1−ζ1

0

∫ 1−ζ1−ζ2

0

f(ζ1, ζ2, ζ3, ζ4)dζ3dζ2dζ1

=
4∑
i=1

Hif(ζ1, ζ2, ζ3, ζ4) (13)

where f is the integrand of equation (11), and Hi is a weight
applied for sample point i, called the ith ”Gauss point” [30, p.
200].
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2.3 Solution of the global eigensystem
Once the global mass and stiffness matrices have been as-
sembled, the solution to equation (4) can be computed. The
solution is assumed to be of the form

u = φ sinω(t− t0) (14)

where φ is an eigenvector of the system, ω is the correspon-
ding frequency of vibration, t is the time variable, and t0 is
a time constant [31, p. 786]. Substituting equation (14) into
equation (4), the generalized eigensystem may be expressed

[K]φ = ω2[M ]φ, (15)

which for an N degree of freedom system yields N pairs of
eigenvector, φ, and eigenvalue, ω2, solutions [31, p. 786].

The code was developed to solve the general eigensys-
tem expressed in equation (15). The specifics of the model
are input to the solver as the mesh, boundary conditions, and
material properties. Once the local inertia and stiffness ma-
trices are generated for each element and subsequently map-
ped to the global system, the global eigensystem is solved for
its eigenvectors and eigenvalues.

3 Validation case 1
The computer program STARS (STructural Analysis Rou-
tineS) was developed by NASA in the 1980’s for the purpose
of analyzing the static, stability, free-vibration, and dynamic
responses of structural systems [24, p. 1]. The documentation
which accompanies the software gives several sample pro-
blems to illustrate its capabilities. One such problem inves-
tigated is the free-vibration of a three-dimensional isotropic
cube which is fixed at one face, as shown in Figure 1. Each
of the free nodes within the model have three translational de-
grees of freedom. This same problem is considered as the first
validation case. The relevant parameters of the simulation are
provided in Table 1.

Figure 1: Physical system under consideration for the first valida-
tion case. The gray face is fixed, while the transparent faces are free.

To compare the solutions for natural frequencies obtai-
ned computationally with the exact solution provided in [24,
p. 42], the solutions are normalized according to the follo-
wing equation :

ω̄i =
ωi√
E/ρ

(16)

Table 1: Physical parameters for the first validation case [24, p. 41]

Parameter Value (dimensionless)
Side length, L 10
Young’s Modulus 10 × 10−6

Poisson’s ratio 0.3
Density 2.349 × 10−4

where ω̄i is the ith normalized form of the ith natural fre-
quency, ωi.

Convergence behaviour of both the constant strain and
linear strain finite element models were investigated by cal-
culating the normalized natural frequencies of the cube for
increasingly refined mesh sizes. This behaviour is illustrated
in Figure 2. Both models show gradual convergence towards
the exact solution, with the linear strain elements approaching
the solution at a faster rate than the constant strain elements.
Linear strain elements improve accuracy through the use of
quadratic shape functions, which results in variable deriva-
tives of the shape functions over the element volume [29, p.
335] which better approximate strain gradients.

A direct comparison of the computationally obtained
non-dimensional natural frequencies for both the constant and
linear strain elements is shown in Table 2. Linear strain ele-
ments show superior accuracy for the first six modes compa-
red to the constant strain model. The percent error lies below
2.6 % and 10.3 % of the exact solution for the linear strain
model and constant strain models, respectively. Accordingly,
high accuracy solutions may be obtained with a larger num-
ber of constant strain elements than linear strain elements. In
the following validation cases, the selection between either
of these element types will consider this balance of accuracy
and efficiency.
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Figure 2: Convergence behaviour of the finite element solution for
both constant strain and linear strain elements.

4 Validation case 2
An early continuum model of vocal fold vibration is docu-
mented in [25]. This model approximates a single vocal fold
as a parallelepiped with three fixed faces representative of the
anterior, posterior, and lateral surfaces, as shown in Figure 3.
The free-vibration of this model is considered as the second
validation case. Relevant physical parameters are tabulated in
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Table 2: Comparison of exact natural frequency solution from [24]
with developed model for constant and linear strain elements

(a) Constant strain

Mode number Exact solution Computed solution Percent error (%)

1 0.0680 0.0707 4.00
2 0.0680 0.0710 4.35
3 0.0929 0.1024 10.25
4 0.1611 0.1629 1.09
5 0.1819 0.1887 3.74
6 0.1819 0.1890 3.92

(b) Linear strain

Mode number Exact solution Computed solution Percent error (%)

1 0.0680 0.0671 1.34
2 0.0680 0.0672 1.25
3 0.0929 0.0912 1.82
4 0.1611 0.1600 0.69
5 0.1819 0.1772 2.60
6 0.1819 0.1772 2.57

Table 3. The plane of isotropy is in the vertical-lateral plane,
while the anterior-posterior direction represents the longitudi-
nal direction with distinct material parameters. The nodes of
the model have translational degrees of freedom in the verti-
cal and lateral directions, while anterior-posterior translations
are assumed negligible.

Figure 3: Physical system under consideration for the second va-
lidation case. Textured faces are fixed, while the transparent faces
are free. x-direction : Lateral. y-direction : Anterior-posterior. z-
direction : Vertical.

Table 3 shows two values for the transverse Poisson’s ra-
tio. Case 2a represents the completely compressible case, and
case 2b represents the nearly incompressible case. The varia-
tion of this parameter was shown to alter the computed mode
shapes in [25], and accordingly, will be considered as two se-
parate cases as part of the following validation. For each case,
the first three natural frequencies and mode shapes are com-
puted, and compared with the results in [25].

Table 3: Physical parameters for the second validation case [25, p.
3349]

Parameter Value
Lateral depth, W 1.0 cm
Longitudinal (anterior-posterior) length, D 1.2 cm
Vertical thickness, L 0.7 cm
Density 1.03 g/cm3

Transverse Young’s modulus 105 dyn/cm2

Longitudinal shear modulus 105 dyn/cm3

Transverse Poisson’s ratio Case 2a Case 2b
0 0.9999

Longitudinal Poisson’s ratio 0

4.1 Case 2a : Completely compressible case
Convergence behaviour of the model’s first three natural fre-
quencies for the compressible case are displayed in Figure 4.
Asymptotic behaviour is observed for nearly all model sizes,
which illustrates that the purely lateral vibration behaviour
requires a model with low resolution to produce accurate
predictions of natural frequencies. The predicted natural fre-
quencies entrain on the ranges reported in [25], with numeri-
cal values and percent differences tabulated in Table 4. Exact
values are not reported in [25] ; accordingly, values were ap-
proximated through a digital image extraction from reported
plots.
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Figure 4: Convergence of the first three natural frequencies of the
completely compressible validation case.

Table 4: Comparison of computed natural frequencies for the com-
pletely compressible validation case

Mode number
Computed
frequency (Hz)

Frequency
from [25] (Hz)

Percent
difference (%)

1 132.8002 132.8 0.0002
2 151.4063 151.5 0.0619
3 159.7 159.6 0.048

A qualitative comparison of the predicted mode shapes
in the mid-coronal plane are illustrated in Figure 5. This fi-
gure illustrates that the predicted mode shapes of the present
investigation are in general agreement with those from [25].
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(a) Mode shape 1

(b) Mode shape 2

(c) Mode shape 3

Figure 5: Comparison of mode shapes for the completely com-
pressible case. Left : Computed mode shape. Right : Mode shape
from [25].

4.2 Case 2b : Nearly incompressible case
Convergence behaviour for the nearly incompressible case is
displayed in Figure 6. Asymptotic behaviour is not obser-
ved for lower resolution models as in the compressible case,
and accordingly, only higher resolution models yield compa-
rable results. Natural frequencies once again entrain on the
values reported in [25], with a numerical comparison given in
Table 5. Percent differences are larger for the nearly incom-
pressible model than for the completely compressible model.
This is likely due to the influence of the transverse vibration
introduced due to the change in the transverse Poisson’s ra-
tio. Despite this deviation, percent differences are low, with
differences peaking at 1.7451 %.

Table 5: Comparison of computed natural frequencies for the nearly
incompressible validation case

Mode number
Computed
frequency (Hz)

Frequency
from [25] (Hz)

Percent
difference (%)

1 133.2423 132.4 0.6342
2 153.7600 151.1 1.7451
3 155.3512 152.8 0.048

A qualitative comparison of the predicted mode shapes
on the mid-coronal plane are illustrated in Figure 7. This fi-
gure illustrates that the predicted mode shapes of the present
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Figure 6: Convergence of the first three natural frequencies of the
nearly incompressible validation case.

investigation are in general agreement with those from [25].

(a) Mode shape 1

(b) Mode shape 2

(c) Mode shape 3

Figure 7: Comparison of mode shapes for the nearly incompressible
case. Left : Computed mode shape. Right : Mode shape from [25].

5 Validation case 3
A model of a multi-layered continuum model of a vocal fold
is documented in [26]. This model clearly defines the divi-
sion of the vocal fold into distinct body, cover, and ligament
regions, each with its own material property values. These
values are reported in Table 6. The geometry of the model is
illustrated in Figure 8, however, detailed geometric considera-
tions are reported in full in [26, p. 9330]. Similar to the second
validation case, the vocal fold was fixed along the anterior-

18 - Vol. 43 No. 1 (2015) Canadian Acoustics / Acoustique canadienne



posterior surfaces, and the lateral surface. Free nodes of the
model were allowed three translational degrees of freedom.
The material was treated as transversely isotropic, with the
transverse plane in the x-y direction.

Table 6: Physical parameters for the third validation case [26, p.
9316]

Parameter Body Cover Ligament
Transverse shear modulus (kPa) 1.05 0.53 0.87
Longitudinal shear modulus (kPa) 12 10 40
Longitudinal Young’s modulus (kPa) 31.2 26 104
Transverse Poisson ratio 0.3 0.3 0.3
Longitudinal Poisson ratio 0.3 0.3 0.3
Density (g/cm3) 1.0 1.0 1.0

Figure 8: Physical system under consideration for the third valida-
tion case. The anterior-posterior faces (x-y surfaces) and the lateral
face (x-z surface) are fixed, while the remaining nodes have three
translational degrees of freedom.

Convergence behaviour of the model is shown in Fi-
gure 9. A large number of elements are required to ap-
proach convergence. Accordingly, constant strain elements
were used for the analysis in order to preserve efficiency due

to an inherently large requirement of degrees of freedom. A
comparison of the first four computed natural frequencies
is reported in Table 7. The percent differences are minimal,
which indicates that the converged solution agrees with the
reported values in [26].
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Figure 9: Convergence of the first four natural frequencies of the
third validation case.

Table 7: Comparison of computed natural frequencies for the third
validation case

Mode number
Computed
frequency (Hz)

Frequency
from [26] (Hz)

Percent
difference (%)

1 112.9847 114 0.90
2 122.6436 125 1.90
3 132.0509 133 0.72
4 143.3063 144 0.5

A qualitative comparison of the first four mode shapes
is illustrated in Figure 10. Similar to the second validation
case, pictured is the periphery of the mid-coronal plane of
the vocal fold. Solid and dashed lines represent the positive
and negative eigenvector mode shapes respectively. General
agreement is shown between the modes, with the exception
of the third mode shape. In Figure 10c, a slight difference
between the y-component of magnitude can be seen, as parts
of the overlapping mode shapes show dissimilarity. This dif-
ference may be attributed to the method in which the mode
shape was calculated, or slight differences in modeling the
vocal fold geometry.

6 Modeling of a polyp
The following analysis is concerned with the documentation
of the development of a continuum model of a vocal fold with
a unilateral sessile polyp. Similar continuum models of vocal
fold polyps [3,32] have been developed, and accordingly, the
trends discussed in these studies will be compared. The model
presented herein is concerned with accurate representation of
the polyp shape, material behaviour and position on the vocal
fold.

6.1 Polyp pathology
Vocal fold polyps are benign lesions [33] which form on the
superficial layer of the vocal fold. These lesions are typically
unilateral, meaning they appear on one fold only [34, p. 456],
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(a) Mode shape 1

(b) Mode shape 2

(c) Mode shape 3

(d) Mode shape 4

Figure 10: Comparison of mode shapes for the third validation case.
Left : Computed mode shape. Right : Mode shape from [26].

or they may be bilateral, pedunculated, or sessile [33]. Due
to the additional mass, increased stiffness, and damping pro-
perties of the polyp, as well as the influence of a gelatinous
material which forms on the sub-epithelial layer of the vocal
fold [33], mucosal wave propagation is altered on the vocal
fold, and voice disorders may arise as a result [21, pp. 93-94].
The sessile polyps often manifest as half ellipses which pro-
trude from the medial surface of the fold [35, p. 268]. Based

on this data, the sessile polyp in this model is based on half
of a sphere which protrudes from the medial surface of the
vocal fold. The sphere’s center is placed at the vertical mid-
point of the surface, on top of the cover layer of the vocal fold.
The polyp’s center may be moved along the anterior-posterior
direction to simulate asymmetries. In [36], a clinical study
was performed which observed polyps as large as 0.7 mm in
length, width, and depth. Accordingly, the half-spherical po-
lyp modeled in this study may have a length bounded between
0.3 mm and 0.7 mm.

The material properties of polyps have a wide range of
reported values. The typical trend, however, is an increase in
stiffness relative to the surrounding vocal fold muscle tissue.
In [32], polyp tissue is simulated as a five-fold increase in
stiffness. The same assumption is made of the polyp modeled
in the present study. The polyp will also be assumed to be
isotropic, as there exist no muscle fibers which run through
the lesion resulting in transverse isotropy. Subsequently, the
Young’s modulus of the polyp is assumed to be five times
the longitudinal stiffness of the vocal fold ligament, with a
Poisson’s ratio of 0.3, and the same density as the surrounding
tissue.

6.2 Model parameters and simulation setup
The vocal fold geometry described in [26] is adopted for this
study, as it sufficiently details the geometry and material pro-
perties of a multi-layered vocal fold. The illustration in Figure
11 displays this model with the addition of a 0.7 mm diameter
polyp centered along the anterior-posterior direction. The ma-
terial properties of this model are given in Table 6 and Table
8.

Table 8: Unilateral sessile polyp model parameters

Parameter Value
Young’s Modulus (kPa) 520
Poisson ratio 0.3
Density (g/cm3) 1.1

For the purpose of this investigation, trends related to the
position and size of the polyp will be explored. In [3], the ef-
fect of varying these parameters of a point mass nodule on the
fundamental frequency of the vocal fold are determined. This
study concluded that fundamental frequency decreased as the
polyp size increased, and that the fundamental frequency de-
creased as the polyp approached the center of the anterior-
posterior direction. This analysis is repeated with a spatially
modeled polyp in order to compare trends. Accordingly, two
sets of simulations are run. The first set of five simulations
varies the polyp length, s, between 0.3 mm ≤ s ≤ 0.7 mm
in 0.1 mm increments. Figure 12 illustrates the two extreme
cases run in this set of simulations. The second set of simula-
tions varies the position of a 0.7 mm polyp along the anterior-
posterior direction. Ten positions centered between 0.7 mm
and 7 mm along the right side of the vocal fold are selected.
By virtue of symmetry, polyps are not placed on the left side
of the vocal fold, as computed frequencies would expected to
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Figure 11: Mesh of a vocal fold with a sessile polyp.

be replicated. Figure 13 illustrates the two extreme cases in
the second set of simulations.

(a) s = 0.3 mm and c = 7 mm. (b) s = 0.7 mm and c = 7 mm.

Figure 12: Illustration of extreme cases of the first set of simula-
tions. Holding c = 7 mm, the polyp size is varied.

7 Results
The first set of simulations was used to generate data to de-
fine a relationship between the fundamental frequency of the
pathological vocal fold and polyp size, which is illustrated
in Figure 14. This figure shows that, similar to [3], an inverse
proportionality exists between the fundamental frequency and
the polyp size. Asymptotic behaviour can be observed for the
largest and smallest polyps. Small polyps have a negligible
effect on the fundamental frequency, indicating that the small

(a) c = 0.7 mm and s = 0.7 mm. (b) c = 7 mm and s = 0.7 mm.

Figure 13: Illustration of extreme cases of the second set of simula-
tions. Holding s = 0.7 mm, the polyp position is varied.

localized change in mass and stiffness has little influence on
the natural frequency. Inversely, for large polyps, a more sub-
stantial region of the vocal fold is affected by the mass and
stiffness change, and consequently, the rate of decrease of the
fundamental frequency is significant.
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Figure 14: Relationship between vocal fold size and fundamental
frequency of the pathological vocal fold.

The results of the second set of simulations can be
used to show that when the polyp is centered along the
anterior-posterior direction, fundamental frequency is mini-
mized. This relationship is illustrated in Figure 15. A linear
trend was fitted to this data, which indicates that anterior-
posterior position of the polyp may not have as profound of
an influence on the natural frequency as the polyp size. Due
to symmetry, a mirror image of this plot would be expected
for samples between 7 mm ≤ c ≤ 17 mm.
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Figure 15: Relationship between vocal fold position and fundamen-
tal frequency of the pathological vocal fold.

The non-linear relationship between polyp size and fun-
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damental frequency is the result of adding an increasing vo-
lume of stiff material to the vocal fold. Since the parameter
s is a measure of polyp length, increasing s by a factor of
n results in the increase of polyp volume by a factor of n3.
This addition of mass and stiffness to the overall system re-
sults in a sharp decrease in fundamental frequency. Due to the
influence of the zero degree of freedom boundary conditions
at the anterior and posterior surfaces of the vocal fold, the
excess mass and stiffness of the polyp have less of an effect
on fundamental frequency near these surfaces. Consequently,
the minimization of fundamental frequency occurs when the
polyp manifests at the center of the vocal fold, where the ex-
cess mass and stiffness of the polyp has more influence on the
overall system.

8 Conclusions
The validation process of the preceding finite element code is
a necessary procedure to ensure accurate prediction of struc-
tural vibration behaviour for pathological vocal fold models.
This process was documented through direct comparison of
natural frequencies and mode shapes for several different mo-
dels of varying complexity, including various orthotropic ma-
terial conditions, boundary conditions, and complex geome-
tries. These quantitative and qualitative comparisons show
good agreement, indicating that the code is suitable for use
as a predictive tool. The tool was subsequently tested through
the solution of a model of a vocal fold affected with a uni-
lateral sessile polyp which illustrated the expected trends of
fundamental frequency variation with polyp size and position.

The model of a unilateral sessile polyp presented in this
study is an attempt at modeling a pathology in a continuum
medium. Polyp size, material properties, position, and geo-
metry were considered based on a literature survey of clinical
data, in some cases with upper and lower bounds presented to
account for tissue variation across multiple specimens. This
model was validated by considering two sets of simulations
which assessed the effect of polyp size and position on the
fundamental frequency of the system. The results presented in
this study show agreement with previous investigations of the
same relationships. Increasing the length of the half-spherical
polyp was shown to result in a non-linear decrease in funda-
mental frequency due to the corresponding exponential in-
crease in mass and stiffness in the model. Polyp position was
shown to vary the fundamental frequency linearly along the
medial plane due to the balance of the influence of the polyp
and the boundary conditions. This indicates that the model is
valid in a structural sense, and is suitable for future in-depth
studies of the effect of polyps on the free-vibration of vocal
folds.

Future investigations with this code are concerned with
the numerical prediction of the dynamic response of the vo-
cal fold system coupled with the surrounding fluid and sound
propagation. Transient acoustic radiation will then be com-
puted and assessed with the pathological models to assess the
effects of polyps on the radiated sound.
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