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Abstract

Today, automated speech–enabled tools are increasingly being used in everyday environments. This mobility has created new challenges for developers, who

are now faced with input speech of varying styles (e.g. whispered) and corrupted by different noise sources. In this paper, special emphasis is placed on

whispered speech, an underexplored yet burgeoning area due to the rapid proliferation of smartphones around the world. More specifically, this paper explores

the performance boundaries achievable with whispered speech for a speaker verification task, both in matched and mismatched train/test conditions. Several

strategies are investigated to improve the performance in the mismatched scenario, as well as in situations involving ambient noise. Our results agree with

previously reported studies in adjacent areas, that significant gains could be obtained by training speaker models with both naturally voiced and whispered

speech data. Moreover, additional gains could be achieved with speaking style and gender dependent systems. Overall, speaker verification performance inline

with that obtained with naturally-voiced speech could be attained for whispered speech once specific strategies were put in place. Particularly, feature fusion

showed to be an important strategy for practical applications in both clean and noisy conditions.

Keywords: Whispered speech, gender detection, speaker verification, instantaneous frequency, vocal effort classification, modulation spectrum.

Résumé

De nos jours, les outils tirant profit de l’analyse automatique de la parole sont de plus en plus utilisés au quotidien. Cette mobilité engendre de nouveaux défis

pour les développeurs, qui doivent composer avec différents types de parole (par exemple, des chuchotements) et de sources de bruit. Dans cet article, une

attention spéciale est accordée à la parole chuchotée, qui malgré son importance particulière dans le contexte d’une augmentation fulgurante de l’utilisation de

téléphones intelligents dans le monde, demeure un champ inexploré. Plus spécifiquement, cet article explore les niveaux de performance atteignables lorsque

la parole chuchotée est utilisée pour la vérification de locuteurs, à la fois dans des conditions correspondant et non-correspondant d’entraı̂nement et de test.

Plusieurs stratégies sont explorées afin d’améliorer la performance dans le cas non-correspondant, de même que dans des situations impliquant un bruit ambiant.

Nos résultats confirment ceux obtenus dans des domaines connexes : des gains de performance significatifs peuvent être obtenus en développant des modèles

de locuteurs basés sur la parole voisée et chuchotée. De plus, des gains additionnels peuvent être obtenus en considérant des modèles spécifiques à un style

de parole et au sexe. Globalement, un niveau de performance semblable à celui obtenu avec la parole voisée a été atteint lors d’une tâche de vérification de

locuteurs basée sur la parole chuchotée. En particulier, la fusion au niveau des traits caractéristiques (≪ feature fusion≫) s’est avérée une stratégie importante

pour le succès d’applications pratiques dans des conditions de parole propre et bruitée.

Mots clefs: Parole chuchotée, détection de genre, vérification du locuteur, fréquence instantanée, classement de l’effort vocal, spectre de modulation

1 Introduction

Human speech is a natural and flexible mode of communica-

tion that not only conveys a message, but also traits such as

identity, age, gender, social and region of origin, emotional,

and health states, to name a few [1]. Under controlled condi-

tions, speech processing systems have become useful across

a number of domains. As examples, a number of applications

have emerged that allow people to use their voices to interact

with their devices (e.g., Apple’s Siri), login to secure services

(e.g., Bell Canada’s Voice Identification Service), or even un-

lock their mobile devices (e.g., Baidu-I2R Research Centre’s

Speaker Verification Service). Many such applications have

thrived due to the recent proliferation of mobile devices. Not-

withstanding, while the ubiquity of smartphones has opened a

pathway for new speech applications, user mobility has crea-

ted several challenges that still need to be addressed, such as

the robustness to ambient noise or varying vocal efforts (e.g.,

whispering). While robustness to noise has been addressed

numerous times in the past (e.g. [2–4]), little attention has

been given to varying vocal efforts.

Here, special emphasis is given to whispered speech as,

with the burgeoning of mobile speech applications, users have
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become more cautious about protecting the content of their

spoken words, (e.g., during mobile telephone banking) spe-

cially when providing their credit card number, bank account

number, or other personal information. One limiting factor

in the widespread development of whispered speech applica-

tions lie on the lack of large amounts of training data [5–7],

as is the case with normally-voiced speech. Notwithstan-

ding, the increasing interest in this speaking style has led to

the development of a few publicly-available databases, such

as the CHAINS corpus [8]. Such initiatives open doors for

speaking-style dependent models to be used and accurate

whispered speech applications to emerge.

Existing automatic speech and speaker recognition sys-

tems do not perform well under whispered speech conditions,

particularly if normal speech was used during training (i.e.,

training/testing mismatch conditions) [6, 9–11]. Despite this

drop in performance of automated systems, subjective stu-

dies have suggested that whispered speech still conveys a si-

gnificant amount of speaker identity information and degree

of understanding [12, 13]. As such, recent studies looking at

speaker identification have shown that the best solution is to

include small portions of whispered speech during training

to adapt the speaker models [6, 14]. Alternately, other stu-

dies have explored the benefits of developing automated sys-
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tems with dedicated speaker models for different vocal efforts

(e.g., [9, 14, 15]), thus taking into account the particular cha-

racteristics of each vocal effort.

When a person whispers, several changes occur in the

vocal tract configuration, thus altering not only the excita-

tion source, but also the syllabic rate and the general tempo-

ral dynamics characteristics of the generated speech signal

[10, 16]. Therefore, classical methods designed for normal

speech characterization tend to fail for whispered speech, as

commonly used features (e.g. Mel frequency cepstral coeffi-

cients - MFCC) are sensitive to such changes [6,11]. The aim

of this paper is to explore the performance envelope achie-

vable with whispered speech, particularly within the scope of

a small scale speaker verification (SV) task. To this end, we

explore the benefits of different existing preprocessing me-

thods, frequency warping strategies, feature representations,

and SV strategies. The main goal of this paper is to com-

prehensively investigate which system configurations result

in the best performance for whispered and normally-voiced

speech, both in clean and noisy conditions. Ultimately, it is

hoped that the insights reported herein will help the develop-

ment of large scale applications in more realistic scenarios,

and for future development of practical systems that can be

used in everyday settings.

The remainder of this paper is organized as follows. Sec-

tion 2 provides the background on whispered speech, em-

phasizing the main differences with normal speech. Section

3 describes the speaker verification problem, the corpus em-

ployed for speaker verification, the feature extraction ap-

proaches, as well as the baseline settings and results. Section

4 discusses different approaches and strategies to reduce the

error rate in whispered speech speaker verification. Section

5 discusses the robustness of the best feature representations

and system design to different levels of babble noise. Sec-

tion 6 presents further discussion and analysis of the main re-

sults and describes future research directions. Lastly, Section

7 presents the conclusions.

2 Whispered speech

In the past, perceptual studies have been conducted to cha-

racterize major acoustic differences between whispered and

normal-voiced speech. For example, topics such as pitch per-

ception and the correlation between perceived pitch and for-

mant location have been studied, as well as the measurement

of the formant shifts towards higher frequencies [17, 18].

Moreover, perceptual studies have suggested that whispered

speech still conveys a significant amount of speaker identity

and gender information [12, 13, 19, 20].

Using signal processing tools, acoustical studies have

found that whispered speech has a lower and flatter power

spectral density [10]. In [16], it was found that the duration of

consonants in whispered speech is prolonged by about 10%

relative to normally-voiced speech. In addition to the dura-

tion increase, the intensity of the whispered consonants is

lower by about 12 dB. These significant changes have been

documented only in voiced consonants. A recent study has

also corroborated the perceptual findings regarding the for-

mant shifts in whispered mode [21]. The above-mentioned

insights have been used by the research community to tackle

different challenges, such as reconstruction of normal speech

from whispers [22–24], speech recognition [9, 10], and spea-

ker identification [6–8, 14] with whispered speech.

To illustrate some of the significant differences between

normal and whispered speech, their waveforms and spectro-

grams are depicted by Figure 1(a) and 1(b) respectively, for

the utterance “Here I was in Miami and Illinois”. From Figure

1(b), it can be observed that whispered speech is mostly tur-

bulent noise modulated by the vocal tract with no clear struc-

ture. With normal speech (Figure1(a)), on the other hand, the

glottal excitation is clear. Moreover, the time waveform for

whispered speech is significantly lower in amplitude ; in this

particular case about 15 dB lower. Figure 2(a) in turn, illus-

trates the average power spectrum for the same utterance,

using 32 ms windows and a 12 order linear predictive mo-

del to estimate the spectral envelope. From Figure 2(a), it is

evident that the differences lie mostly in the low frequencies.

For normal speech, most of the energy is concentrated below

1 kHz, whereas for whispered speech it is concentrated be-

low 500 Hz, with frequency shifts in the spectral peaks and

valleys. Between 1 kHz and 4 kHz the two spectral envelopes

follow a similar trend, where spectral peaks and valleys are

located in approximately the same frequency values, howe-

ver the differences in magnitude are not constant. Regarding

frame energy distribution, the histogram in Figure 2(b) was

computed using male and female speech and utterances of

about 55 s from 36 speakers and shows that the concentra-

tion of high-energy frames is higher for normal speech, with

60% of the frames having energy between -10 dB and 10 dB.

For whispered speech, on the other hand, 70% of the frames

have energy between -35 dB and -10 dB. Combined, these

findings show that significant differences exist between whis-

pered and normal-voiced speech in terms of temporal, spec-

tral and energy dynamics. As such, it is expected that any

speech-based technology trained on normal speech will fail

when tested on whispered speech. Clearly, strategies need to

be devised to improve system performance. As mentioned

previously, the focus of the present paper is to explore such

strategies for a speaker verification task.

3 Baseline SV system characterization

3.1 Automatic speaker verification system

In automatic speaker recognition (SR) there are two classi-

cal tasks that can be performed : speaker identification (SI)

and speaker verification (SV). Identification is the task of de-

ciding, given a speech sample, who among a set of speakers

said it. This is an N–Class problem (given N speakers), and

the performance measure is usually the classification rate or

accuracy. Verification, in turn, is the task of deciding, given

a speech sample, whether the specified speaker really said it

or not. The SV problem is a two class problem of deciding

if it is the same speaker or an impostor requesting verifica-

tion. Commonly, SV exhibits greater practical applications
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(a)

(b)

Figure 1: Comparison of waveform and spectrogram of the speech

signal “Here I was in Miami and Illinois” from the same speaker in

(a) normal and (b) whispered speech mode.

related to SI, specially in access control and identity mana-

gement applications. In the past, whispered speech has only

been explored within the SI problem [5–8, 14, 25], where the

use of the accuracy metric does not give a clear picture of the

actual impact of mismatch conditions between training and

testing [26]. In addition, it is not clear whether the strategies

proposed for SI systems can also be useful for SV systems.

Currently, state-of-the-art SV systems based on normal

speech use highly elaborate techniques, such as the so-called

i-vectors [27]. However, to properly train such systems, large

amounts of training data are required [2, 28]. Unfortunately

these amounts of data are hard to collect for whispered mode,

which can affect the training and limit the advantages of these

techniques over other strategies. Furthermore, these methods

are heavily dependent of the data, i.e., the nature of the tes-

ting data should be the same with the one the i-vector ex-

tractor was trained on [29]. According to our experiments,

a classification system based on Gaussian mixture models

(GMM) and maximum a posteriori (MAP) adaptation, as de-

picted by Figure 3, was more suitable for dealing with mis-

matched scenarios. For the described system, the widely-used

mel-frequency cepstral coefficients (MFCC) are used to im-

plement a text–independent SV system [2, 30]. First an M -

(a)

(b)

Figure 2: Plots of average power spectrum and frame energy dis-

tribution. (a) average power spectrum comparison of the utterance

“Here I was in Miami and Illinois” spoken by same speaker and (b)

frame energy distribution for normal and whispered speech using

combined male and female data across 36 speakers.

Component GMM is trained as an universal background mo-

del (UBM) using the Expectation – Maximization (EM) algo-

rithm and the training data available from all speakers. Then,

a GMM for each speaker is obtained using MAP adaptation,

as depicted by top half diagram in Figure 3. During the recog-

nition phase (bottom half of Figure 3), the hypothesized spea-

ker model is scored against the UBM and a decision is made

based on thresholding. More details can be found in [30].

3.2 Speech stimuli

In our experiments, the CHAINS (Characterizing Individual

Speakers) speech corpus was used [8]. The corpus contains

the recordings of 36 speakers obtained in two different ses-

sions with a time separation of about two months, there are

three different accents : 28 speakers from Ireland (16 male), 5

speakers from the USA (2 male) and 3 speakers from the Uni-

ted Kingdom (2 male). Additional details about the database

can be found in [8]. Speech stimuli was generated under six

speaking conditions, namely solo (natural rate reading), re-

telling without time constraints, two-person synchronous rea-

ding, repetitive synchronous imitation, accelerated-rate rea-

ding, and whispered.
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Figure 3: Block diagram of a general SV system. Top and bottom

diagrams represent the training and testing stages, respectively, for a

GMM-UBM SV based system

For our experiments, two speaking styles were used -

solo and whispered - where the same text was read in both

conditions. We used the speech stimuli generated from rea-

ding the paragraph of the Cinderella story (average duration :

55 seconds, minimum duration : 48 seconds) for training, and

kept the stimuli generated from reading the Rainbow Text

(average duration : 30 seconds ; minimum duration : 23 se-

conds) segmented in short sentences of 3 seconds, plus 32

individual sentences (nine selected from the CSLU Speaker

Identification corpus and 23 from the TIMIT corpus) for tes-

ting. Data was originally recorded at 44.1 kHz sample rate but

downsampled to 8 kHz, as motivated by [31].

3.3 Baseline performance in matched and mismat-
ched conditions

Prior to feature extraction, in our experiments we normalized

the speech data to -26 dBov (dB overload) using the ITU-T

P.56 speech voltmeter [32], and pre-emphasized using a first

order FIR filter with constant a = 0.97. Then 19 MFCC were

computed on a per-window basis excluding the 0–th order

cepstral coefficient, using a 32 ms window with 50% overlap

and 24 triangular bandpass filters. Delta coefficients were also

included to convey temporal dynamics information. Delta co-

efficients were computed by means of an anti-symmetric Fi-

nite Impulse Response (FIR) filter of length nine to avoid

phase distortion of the temporal sequence. For all experi-

ments herein, the training data was fixed to 35 seconds per

speaker, and the number of Gaussian components per model

was fixed to M = 32, showing a tradeoff between perfor-

mance and computational burden.

Before presenting the results, we want to illustrate the

effects of pre-emphasizing and normalizing the speech re-

cording. Figure 4(a) and 4(b) depict the average spectrum

and frame energy distribution, respectively, of amplitude-

normalized and pre-emphasized recordings using male and

female speech. As can be seen, the gap between the two spea-

king styles seen in Figure 2 has been greatly diminished, al-

though most of the differences remain below 1.2 kHz.

Table 1 reports the Equal Error Rate (EER) obtained with

the baseline system under different train/test conditions. In

(a)

(b)

Figure 4: Plots of (a) average power spectrum and (b) frame energy

distribution after preprocessing for normal and whispered speech

(averaged over 36 speakers).

the table, ‘c’ stands for cepstral coefficients and ‘∆’ for delta

coefficients. As can be seen, for normal speech in the nor-

mal/normal (train/test) matched condition inclusion of delta

coefficients did not provide any advantage over using only

MFCCs. In fact, in the normal/whisper and whisper/whisper

scenarios, inclusion of delta parameters had a negative impact

on system performance, as previously reported by [6]. Only

in the mismatch whisper/normal condition, was an improve-

ment in EER with the inclusion of ∆ parameters observed ;

the gains, however, were modest and we can not conside-

rate this as a significant advantage. In the Table, the values

in bold represent the baseline performances with which im-

provements will be gauged against.

Table 1: EER(%) comparison for different training/testing condi-

tions after power normalization and pre-emphasis. Results in bold

represent the baseline systems with which the tested improvements

will be gauged against.

EER(%)

Training Testing c c+∆

Normal Normal 2.13 2.33

Normal Whisper 35.75 38.62

Whisper Normal 29.81 28.18

Whisper Whisper 2.90 3.12
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Overall, it can be seen that significant performance de-

gradation occurs in the mismatch conditions. When testing

with whispered speech, the obtained EER for the mismatch

condition was more than 10 times greater than in the mat-

ched condition. Moreover, a gap of approximately 6 – 9%

can be seen in mismatched cases, depending on what spea-

king style is used for training. As can be seen, lower EER

is achieved when training with whispered speech and testing

with normal. This was expected, as in our dataset, approxi-

mately 70/30% of the normal-speech training data was com-

prised of voiced/unvoiced speech segments. When training

with normal speech, it is likely the GMMs became biased to-

wards voiced characteristics which are not present in whispe-

red speech. On the other hand, when training with whispered

speech, the GMMs could more accurately represent unvoiced

normal-speech segments, as only small differences have been

observed between unvoiced consonants in whispered and nor-

mal speech modes [16]. To better illustrate this point, Figure

5 shows the plots of the scores distribution for target speakers

and impostors under the two training conditions. Continuous

lines represent the speaking style used for training (i.e., nor-

mal speech in subplot (a) and whispered speech in subplot

(b)).

Figure 5(a) shows that by using normal speech for trai-

ning the scores of normal speech are less scattered than those

for whispered speech, which, in turn, show a high degree of

overlap. Figure 5(b), on the other hand, shows the scores ob-

tained when training only with whispered speech. As can be

seen, scores from whispered speech testing recordings are

still more scattered than those for normal speech, but the

overlap has been reduced. Overall, as expected the matched

normal/normal scenario resulted in the lowest EER. Together

these findings suggest that alternate strategies are needed to

improve the performance of SV systems based on whispered

speech, particularly in mismatched cases. This is the focus of

the sections to follow.

4 Strategies to improve system performance in
mismatched train/test scenarios

4.1 Frequency and feature warping

Different frequency warping strategies have been proposed

and can be used in lieu of the classical mel scale. These fre-

quency warpings allow greater resolution to be placed at cer-

tain frequency ranges. Commonly used scales include : linear,

exponential and the whisper sensitive scale (WSS) [33], in ad-

dition to the widely used mel scale. Previous studies using the

exponential and linear scales showed that relative improve-

ments of around 20% could be achieved ; however, for further

improvements some knowledge about the speaking style was

needed for testing [5, 25]. Furthermore, the improvements

were shown only for the whispered speech speaker identifi-

cation task, thus there is no evidence about the effects of this

front-end in the speaker verification task. Table 2 shows the

mappings between the original (f ) and warped (f̂ ) frequen-

cies used in our experiments. The linear scale is omitted from

the Table, as f̂ = f .

(a)

(b)

Figure 5: Plots of score distributions for target and impostor spea-

kers using normal and whispered speech files. The scores were com-

puted using two different systems, the system in (a) was trained only

with normal speech and the system in (b) was trained only with whis-

pered speech. Continuous lines are representative of the speaking

style used for training.

Table 2: List of frequency warping strategies used in the experi-

ments. Cepstral coefficients derived are MFCC (mel), EFCC (expo-

nential - Exp. in the table) and WSSCC (WSS).

Scale Frequency warping

Mel f̂ = 2595 × log10(1 + f
700

)

Exp. f̂ = 10610 × (10f/50000 − 1)

WSS f̂ =

{

2475f4

12204+f4 , 0 < f < 2000

4100 − 2000

1+e(f−300)/310 , 2000 ≤ f < 4000

Using the same settings as before, 19 cepstral coeffi-

cients were computed using the above described frequency

warping strategies, along with the delta coefficients. Cepstral

coefficients derived are MFCC (mel), EFCC (exponential),

WSSCC (WSS), and LFCC (linear). This experiment allows

us to determine which frequency warping strategy can bet-

ter reduce the negative impact of train/test mismatch. Addi-

tionally, to mitigate the effects of linear channel mismatch,

a widely accepted method is called feature warping, which

maps the distribution of the cepstral features to a normal dis-

tribution (N (0, 1)) by using a 3-second sliding window, also

known as short-time Gaussianization (STG) [34]. For the sake
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of comparison, the different feature sets are evaluated in the

two possible scenarios : with and without STG.

Results are shown in Table 3 where two training/testing

conditions are evaluated, namely normal/normal and nor-

mal/whisper (represented in the table as N/N and N/W, res-

pectively). Whilst the negative impact of mismatch is still

evident, all frequency warping strategies have improved the

MFCC performance. As an example, by using the whisper

sensitive scale and appending delta coefficients it is possible

to reduce the EER by approximately 13% relative to the ba-

seline in mismatch condition without using feature warping.

Furthermore, STG can result in additional improvements in

the mismatch condition, leading to improvements up to 31%

relative to the baseline. Notwithstanding, one disadvantage

of frequency and feature warping is the drop in performance

obtained in the matched N/N condition. For example, with

MFCCs the EER doubles after STG. The other frequency

warping strategies, on the other hand, resulted in more stable

results after STG. As before, no significant advantages were

observed by appending the delta coefficients.

4.2 Frequency sub-band analysis

Results presented in Tables 1 and 3 suggest that whispered

speech conveys information highly related to each speaker,

but significant differences are still present between the two

speaking styles. Motivated by the results in Figure 4(a), we

also explore the use of only a sub-band of the speech signal

in which their difference is minimized. According to Figure

4(a), this sub-band ranges from approximately 1.2 kHz to 4

kHz. As such, the frequency-warpings are calculated between

1.2 and 4 kHz. This frequency band comprises mostly infor-

mation from the second and third formants (F2 and F3). EER

performance results are shown in Table 4. As observed, fur-

ther gains are obtained in the mismatch condition, but at the

cost of reduced performance in the matched scenario. Not-

withstanding, these findings corroborate previously-reported

cues showing a significant amount of speaker-specific infor-

mation in the second and third formants [35, 36]. An addi-

tional advantage of focusing within this sub-band is that for

whispered speech, shifts in F2 of 2 - 24% and in F3 of 1 - 10%

have been observed relative to normal-voiced speech [21].

This is a rather low variation when compared with the shift

for F1 that can be 50% or higher [21]. The most relevant im-

provement in mismatch condition is achieved using MFCC ;

when comparing with the results in Table 3, a relative reduc-

tion in the error rate of approximately 38% is achieved using

STG and without appending delta coefficients. It is impor-

tant to emphasize that in the matched condition the error rate

is three times higher than that reported in Table 3. Together,

these results show the high relevance of speaker identity in-

formation contained below 1.2 kHz, particularly for normal

speech.

4.3 Alternate feature representations

Some authors have proposed to use features completely dif-

ferent in nature to cepstral coefficients. As an example, fea-

tures derived from the AM-FM signal representation have

proven to be more robust in noisy conditions and perform at

the same level as cepstral coefficients [8, 37]. The main dif-

ference is that cepstral coefficients are based on power spec-

trum estimation (i.e., frequency domain) whilst features deri-

ved from the AM-FM signal representation are computed in

the time domain. More specifically, the AM-FM model de-

composes the speech signal into bandpass channels and cha-

racterizes each channel in terms of its envelope and phase

(instantaneous frequency) [8, 38]. The speech signal s(n) is

filtered through a bank ofNK filters, resulting in the bandpass

signal yk(n) = s(n) ∗ hk(n), where hk(n) corresponds to

the impulse response of the k-th filter. There are different ap-

proaches for filter design that have been used in speech appli-

cations. In this study, two approaches were tested : a gamma-

tone filterbank [39], and the Gabor filterbank [8], each with

23 channels. Filter center frequencies range from 50 Hz to

3528 Hz and their bandwidths are characterized by the mel

frequency scale. After filtering, each analytic sub-band signal

sk(n) is uniquely related to a real–valued bandpass signal

yk(n) by the relation :

sk(n) = yk(n) + j · ŷk(n) (1)

where ŷk(n) stands for Hilbert transform of yk(n). There are

two approaches to decompose each analytic signal in terms

of its envelope and phase : i) the Hilbert envelope approach

(non–coherent demodulation) and ii) coherent demodulation

[38]. The main difference between these two approaches is

in the allocation of phase between the envelope and carrier.

Whereas the Hilbert envelope places all of the sub-band phase

in the carrier, coherent demodulation makes the important

distinction between carrier and modulator phase. In our pre-

vious work, it was found that the Hilbert envelope approach

resulted in improved performance relative to the coherent de-

modulation approach [40], hence in this work only the Hil-

bert envelope approach is used. For the sake of notation, let

mk(n) denote the low–frequency modulator and fk(n) the

instantaneous frequency for each bandpass signal. Figure 6

depicts the general process to decompose the speech signal

into bandpass channels and their respective modulator and

instantaneous frequencies.

Figure 6: AM-FM signal representation. Block diagram to decom-

pose the speech signal in bandpass channels and compute the low

frequency modulator and the instantaneous frequency per channel.
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Table 3: EER(%) comparison for matched and mismatched training/testing condition, using different frequency warping strategies and

comparing the effects of using STG as feature warping. N/N and N/W correspond to training with normal speech and testing with normal or

whispered speech, respectively. All feature representations where computed from the full 0 to 4 kHz band. EER values in bold highlight the

best performance achieved in matched and mismatched conditions.

without STG with STG

Cepstral c c+∆ c c+∆
Coefficients N/N N/W N/N N/W N/N N/W N/N N/W

MFCC 2.13 35.75 2.33 38.62 5.08 32.23 4.78 35.23

LFCC 4.88 31.04 4.60 30.20 4.17 24.33 5.20 25.82

EFCC 5.09 31.36 5.21 30.10 4.18 24.57 5.26 25.64

WSSCC 6.01 31.02 6.21 29.08 6.17 25.70 7.50 27.26

Table 4: EER(%) comparison for matched and mismatched training/testing condition using the sub-band from 1.2 kHz to 4 kHz to compute

the different feature sets with different frequency warping strategies and comparing the effects of using STG as feature warping. N/N and

N/W correspond to training with normal speech and testing with normal or whispered speech, respectively. EER values in bold highlight the

best performance achieved in matched and mismatched conditions.

without STG with STG

Cepstral c c+∆ c c+∆
Coefficients N/N N/W N/N N/W N/N N/W N/N N/W

MFCC 8.64 26.50 9.02 26.82 7.14 21.81 9.20 24.51

LFCC 9.58 27.54 9.53 25.96 7.44 21.81 9.62 22.89

EFCC 9.39 27.18 9.45 26.24 7.74 22.47 9.38 23.43

WSSCC 8.36 27.75 8.85 26.93 8.89 24.87 11.62 25.58

Here, two features are explored based on the AM-FM

signal decomposition. The first is the so called Weighted Ins-

tantaneous Frequencies (WIF). These features are computed

by combining the values of mk(n) and fk(n) using a short-

time approach :

Fk =

n0+τ
∑

i=n0

fk(i) ·m
2
k
(i)

n0+τ
∑

i=n0

m2
k
(i)

, k = 1, . . . , 23, (2)

where τ is the length of the time frame. Fk is calculated over

the full length of each mk(n) with increments of τ/2.

The second feature set is the mean Hilbert envelope co-

efficients (MHEC) proposed in [37] and shown to perform

better than traditional MFCC features under noisy conditions

for normal speech for speaker verification. In this case, the

envelope mk(n) is blocked into frames and the mean Hilbert

envelope for a specific frame in channel k is calculated as :

Ek =

log

(

1

τ

n0+τ
∑

i=n0

w(i − n0 + 1) ·mk(i)

)

Ēk

, k = 1, . . . , 23

(3)

where w(n) is a Hamming window of length τ , and the term

Ēk represents the long-term average in each channel which

normalizes the values of Ek. Finally, for a specific frame and

using all 23 Ek values, a discrete cosine transform (DCT) is

applied to produce the MHEC features [37].

Table 5 reports the EER obtained with the different fil-

terbank characterizations, considering both the full band and

the limited sub-band (1.2–4 kHz) components. In the matched

condition, MHEC and WIF perform better than cepstral coef-

ficients without STG and at the same level using STG. Howe-

ver, in mismatched condition both WIF and MHEC achieve

error rates similar to the ones achieved with cepstral coeffi-

cients. These results suggest that the information present in

the slowly varying envelope of the bandpass signals is highly

discriminative, but extremely sensitive to changes in the vocal

effort. By limiting the analysis frequency band to 1.2–4 kHz,

a significant reduction of approximately 36% could be achie-

ved relative to the baseline system in mismatched condition

(see Table 1). This, however came at a severe penalty for the

matched scenario, as was similarly observed with the cepstral

coefficients (see Table 4).

4.4 Feature combination

Since cepstral coefficients, WIF, and MHEC extract comple-

mentary information, we explored feature combination as an

alternate strategy to improve SV performance in mismatched

scenarios. For this experiment, and based on the results pre-

sented in Table 4, the mel and linear scales were selected to
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Table 5: EER(%) comparison for matched and mismatched trai-

ning/testing conditions, using features derived from the AM-FM

signal representation. Limited band corresponds to 1.2–4 kHz.

Norm/Norm and Norm/Whsp correspond to training with normal

speech and testing with normal or whispered speech, respectively.

For each feature representation (WIF and MHEC) EER values in

bold highlight the best performance per train/test condition.

Filter Bank EER–Full band EER–limited band

N/N N/W N/N N/W

W
IF

Gammatone 1.63 33.73 5.87 24.63

Gammatone + STG 4.48 29.48 7.86 23.19

Gabor 2.18 35.65 6.53 24.27

Gabor + STG 4.17 30.92 7.99 22.77

M
H

E
C

Gammatone 2.06 42.24 9.80 26.72

Gammatone + STG 5.51 41.34 10.71 28.78

Gabor 1.57 36.73 9.13 26.24

Gabor + STG 4.23 34.09 11.62 26.78

compute the cepstral coefficients in the 1.2–4kHz sub-band

with STG. Moreover, motivated by results in Table 5, the WIF

features using the Gammatone filter bank and the MHEC fea-

tures using the Gabor filter bank were selected as they showed

to be more effective in the matched condition without STG.

Results for feature combination are shown in Figure 7(a)

and Table 6. In the table, the features labelled in the columns

are combined with the features labelled in the rows to pro-

duce a new feature space and the EER corresponding to each

testing condition is presented in the respective intersection.

According to these results, feature combination does not help

to obtain further reductions of the EER in mismatch condi-

tion (N/W). Notwithstanding, combining WIF and LFCC and

comparing the results with the baseline system, this combi-

nation can help to maintain the performance inline with the

baseline system for the match condition, whilst achieving re-

lative reduction of the EER in the mismatch condition by ap-

proximately 21% . To extend the analysis, the scores of target

speakers and impostors were calculated separately using WIF

and LFCC. These scores were used to estimate the parame-

ters of a 2 dimensional full covariance Normal distribution.

The contours of the distributions are depicted in Figure 7(b)

with continuous lines for normal speech and dashed lines for

whispered speech. As can be seen, the overlap between target

speakers and impostors for normal speech is minimum, ho-

wever for whispered speech the scores are more scattered and

higher overlap exists. As such, any decision boundary mini-

mizing the error rate for normal speech will not necessarily be

optimal for whispered speech. Such findings suggest the need

for speaking-style dependent models, as will be described in

Section 4.7.

4.5 Gender dependency analysis

Male and female voices are different from each other in terms

of physical characteristics (pitch and vocal track length), lin-

guistics and style. As such, some authors recommend to train

separate systems per gender [41, 42]. To test if this trend also

Table 6: EER(%) comparison with different feature combination,

where the best features from Tables 4 and 5 were selected. EER va-

lues in bold represent the best performance per train/test condition.

Cepstral WIF MHEC

Coefficients N/N N/W N/N N/W

MFCC 2.17 29.35 2.29 36.96

LFCC 2.29 28.16 2.05 36.60

(a)

(b)

Figure 7: Plots of (a) DET curves for feature combination and (b)

contours of an estimated Gaussian distribution for the scores of tes-

ting utterances. These Plots were obtained by using only normal

speech for training and normal and whispered speech for testing.
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occurs with whispered speech, we tested a gender-dependent

system as well. This is possible, as systems have been shown

to accurately discriminate genders from whispered speech in

clean conditions [12,40]. Results are presented in Table 7 for

individual features and Table 8 for feature combination. In

the latter case, the combined feature sets used are the same

as in Section 4.4. As can be seen, in the matched condition

there are some differences relative to Table 6. First, for nor-

mal speech the feature representations that performed best for

male speech did not perform at the same level for female

speech, thus corroborating previous findings [41, 42]. Next,

feature combination (Table 8) in gender dependent models

does not help to reduce the impact in the mismatch condition

relative to the results shown Table 6. This is also corroborated

when comparing the results from Table 6 and the overall error

rates presented in Table 8, thus suggesting that feature com-

bination is more effective in the mismatched train/test condi-

tion for gender independent systems. It is possible that the

models can learn some specific structures about whispered

speech when both genders are involved into the parameter es-

timation. Together, these findings suggest that speaking style

and gender dependencies are present in the whispered speech

SV task. Such scenario will be further explored in Section

4.8.

4.6 Training with combined normal/whisper data

Results presented so far have shown that reliable performance

can be achieved in matched conditions, but significant drop

in performance occurs in mismatched conditions. As an al-

ternate solution, here we explore the use of both normal and

whispered speech during training and model adaptation as has

been done in previous studies for speaker ID [6, 14]. This

allows speaker-specific information represented in whispe-

red speech features to be properly modeled. Since whispered

speech training data can be sparse, it is not clear how much

whispered speech material is necessary to achieve acceptable

performance levels for practical applications. In order to be

able to perform a comparison with the baseline system, we

investigate the effects of adding small amounts of whispered

speech to the training set, using a MFCC–GMM system (wi-

thout delta coefficients). Experiments were conducted using a

fixed duration length of normal speech (35 seconds per spea-

ker) and different duration lengths of whispered speech for

training.

Results of these experiments are illustrated in Figure 8

and Table 9. As can be seen, there is significant improve-

ment by adding as little as 5 seconds of whispered speech

per speaker relative to the mismatch performance reported in

Table 1. By gradually increasing the duration length of whis-

pered speech, the performance of the system also gradually

improves, thus corroborating previous speaker identification

findings [6, 14]. Nevertheless, using the same amount of data

(35 s) for both vocal efforts shows that improved performance

is still achieved with normal speech with respect to whispered

speech (11% lower EER). In addition, it is necessary to pay

attention to the slight losses induced by the addition of whis-

pered speech, which slightly increases the EER for normal

speech. For example, using only normal speech for training,

an EER of 2.13 % was reported in Table 1. Here, in the case of

using the same amount of data for both vocal efforts, an EER

of 3.05 % (i.e., 43% higher) was found. According to these

results, for a practical SV verification task improved perfor-

mance can be achieved for whispered test speech, but at the

cost of lower performance for normal test speech.

Figure 8: DET curves exploring the effects of adding different

amounts of whispered speech to the 35 s of normal speech during

the training phase.

4.7 Speaking–style dependent SV systems

Up to now speaking-style independent SV systems have been

described to handle both vocal efforts. Recent literature on

SI and speech recognition, on the other hand, has recommen-

ded the use of speaking-style dependent models [9, 10, 14],

as depicted by Figure 9. The method builds on the previously

described MFCC-GMM algorithm and takes into account the

different subclasses that can be modelled in order to build

a complete speaker verification system. In this section, two

classes are investigated : normal and whispered modes. In or-

der to develop a speaking-style dependent SV system, a clas-

sification stage is needed in order to detect specific speaking

styles. For example, a recently proposed normal/whispered

speech classifier can be used, as it was shown to perform ac-

curately even in noisy conditions [43].

With speaking style dependent systems, the concept of

“mismatch” shifts from one of train/test mismatch to one

of errors in speaking style classification. In order to ana-

lyse the benefits of having dedicated speaker models for each

speaking style, this first set of experiments will assume an

“oracle” system in which perfect normal/whisper classifica-

tion is achieved. For clean conditions, this is not an unrealistic

assumption [43]. Within this scenario, we are particularly in-
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Table 7: EER(%) comparison with different feature representation using gender dependent models and the best features from Tables 4 and 5.

Best results are highlighted per gender and per training/testing condition.

WIF MHEC MFCC LFCC

Gender N/N N/W N/N N/W N/N N/W N/N N/W

Female 2.15 38.52 2.72 40.79 7.60 28.18 8.46 25.07

Male 2.19 40.91 1.04 38.94 7.42 25.85 6.90 26.16

Overall 2.17 39.84 1.78 39.76 7.50 26.88 7.59 25.67

Table 8: EER(%) comparison with different feature combination using gender dependent models and combining the best features from Tables

4 and 5. Best results are highlighted per gender and per train/test condition.

Female Male Overall

Cepstral WIF MHEC WIF MHEC WIF MHEC

Coefficients N/N N/W N/N N/W N/N N/W N/N N/W N/N N/W N/N N/W

MFCC 3.15 32.71 3.44 41.64 2.40 36.44 1.25 39.66 2.73 34.78 2.22 40.54

LFCC 2.86 32.43 3.29 41.35 2.40 35.51 1.35 39.77 2.60 34.14 2.21 40.47

Table 9: Effects of adding different amounts of whispered speech to

the normal speech training set.

Amount of whispered EER(%)

training data (s) Normal Whispered

1 2.54 30.97

5 2.53 13.25

10 2.49 7.91

15 2.60 5.47

20 2.62 4.24

25 2.66 3.94

30 2.63 3.52

35 3.05 3.45

Figure 9: Multimodel framework for SV. Block diagram for a K-

class speaking style dependent SV system

terested in the performance obtained with the whispered test

speech files. Tables 10 and 11 show the EER comparison for

different frequency warpings and AM-FM feature representa-

tions, respectively. As can be seen from Table 10, inclusion of

delta coefficients degrades performance of the system. Ove-

rall, the Linear-Frequency Cepstral Coefficients (LFCC) and

MFCC showed to be the two sets of feature vectors that can

achieve the lowest error rates, outperforming the WSS scale,

which was developed specifically for whispered speech [33].

From Table 11, in turn, it can be seen that the AM-FM ba-

sed features provide a modest improvement over the cepstral-

based features. When using the gammatone filterbank, WIF

features outperformed the MHEC ones. The opposite beha-

viour was observed with the Gabor filter bank. In both cases

(cepstral and AM-FM based features), the EER results obtai-

ned with whispered test speech files are slightly higher than

those obtained with the normal-voiced files in Table 3, where

an EER of 2.13% was reported with MFCCs.

Table 10: EER(%) comparison in W/W condition using speaking

style dependent models. Results are for whispered test files and

using different warping strategies to compute cepstral coefficients.

EER(%)

Cepstral coefficients c c+∆
MFCC 2.90 3.12

LFCC 2.90 3.08

EFCC 3.12 4.15

WSSCC 4.22 6.02

Subsequently, feature combination was explored. Moti-

vated by the results presented in Tables 10 and 11, the mel

and linear scales were chosen to compute the MFCC and

LFCC features, respectively. The gammatone filterbank was

used to compute the WIF features and the Gabor filterbank

to compute the MHEC features. Since the inclusion of delta

coefficients did not present any advantage for the considered

feature sets, they were not included in this feature combina-
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Table 11: EER(%) comparison in W/W condition using speaking

style dependent models. Results are for whispered test files and

using AM-FM based features. Highlighted results are the best EER

values per feature representation.

AM-FM features

Filter Bank WIF MHEC

Gammatone 2.55 3.10

Gabor 2.62 2.60

tion analysis. Results are shown in the Table 12. According

to these results, significant improvements can be achieved by

combining features, thus corroborating their complementa-

rity. A relative reduction of the EER of approximately 33%

can be seen when comparing the best results from Tables 10

and 11, and outperforming those for normal speech reported

in Table 1.

Table 12: EER(%) comparison in W/W condition with different fea-

ture combination, where the best features from Tables 10 and 11

were selected.

Cepstral AM-FM features

Coefficients WIF MHEC

MFCC 1.79 2.03

LFCC 1.91 1.85

4.8 Gender and speaking–style dependent SV sys-
tems

For these experiments, recordings were separated by gender

in the training phase. Following the scheme presented in Fi-

gure 9, besides the speaking style detection, it would be ne-

cessary to detect two additional classes, i.e., male and female

speech. For these experiments, two UBMs were obtained (one

for each gender) as well as their respective speaker-specific

models from MAP adaptation. Mel and linear scales were

chosen to compute the cepstral coefficients, and from the

AM-FM features the WIF using the Gammatone filter bank

and the MHEC using the Gabor filter bank were selected.

EER results are reported in Table 13. As can be seen, gender

dependent systems provide advantages only for female spea-

kers. Feature combination, on the other hand, did not provide

further advantages as can be observed by Table 14. Interes-

tingly, in the matched N/N scenario shown in Tables 7 and

8, male speech was shown to result in improved performance

related to female speech. With the matched W/W scenario

shown in Tables 13 and 14, the inverse is seen and female

speech results in better performance, with AM-FM based fea-

tures resulting in optimal performance.

As illustrated by Figure 9, when using class-specific mo-

dels, gender classification needs to be performed prior to the

verification stage. For this purpose, an M -component GMM

Table 13: EER(%) comparison in W/W condition for gender and

speaking style dependent models. Results are for whispered speech

test files, and best EER values are highlighted per gender.

Gender WIF MHEC MFCC LFCC

Female 1.27 0.99 1.41 1.55

Male 1.86 2.18 3.73 3.21

Overall 1.59 1.65 2.69 2.47

was trained. Initially, different amounts of training data and

different values of M were evaluated to analyse how these

values affect gender detection error rates. Figure 10 shows

that while the amount of training data does not have a signi-

ficant effect on EER, the number of Gaussian components

does. From Figure 10 it can be seen that there is a settling

point using M=30 and 40 seconds of training data per spea-

ker. Table 15 summarizes the gender detection error rates for

different feature sets and Gaussian components M . As can

be seen, for gender detection WIF and MHEC features, both

using the Gabor filter bank, outperform MFCC features. Mo-

reover, MHEC and WIF features achieve close to perfect ac-

curacy even with only 10 Gaussian components. With MFCC,

on the other hand, this performance is only achieved using

M = 30. This suggests that there is gender-specific infor-

mation in the phase of the acoustic signal and that an ap-

proach based on Hilbert envelopes can be used to characte-

rize such information. This corroborates previously-reported

subjective findings that whispers not only carry information

about speaker identity but also about the gender [12, 19].

Hence, even without glottal excitation, gender discrimination

has been shown to be a feasible task using whispered speech.

Note that cepstral coefficients using other frequency scales or

feature combination did not show any advantage for gender

detection, hence they were not included in Table 15.

Figure 10: Gender detection error rate using MFCC as a function

of of Gaussian components (M ) and amount of training data per

speaker.
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Table 14: EER(%) comparison in W/W condition for gender and speaking style dependent models and feature combination. Results are for

whispered speech test files, and best EER values are highlighted by gender.

Cepstral Female Male Overall

Coefficients WIF MHEC WIF MHEC WIF MHEC

MFCC 1.41 1.13 2.59 2.90 2.06 2.11

LFCC 1.27 1.13 2.28 2.69 1.83 1.99

5 Robustness to noise

As mentioned previously, whispered speech based SV is bur-

geoning due to the popularity of smartphones. But user mo-

bility has also created several challenges that need to be ad-

dressed, one of them is robustness to ambient noise. Hence,

it is important to analyse the robustness of the investiga-

ted features to noise. For these experiments, speaker models

were trained with clean whispered speech and testing data

was contaminated with three different signal-to-noise ratios

(SNR) of babble noise : 5, 10 and 15 dB. Babble noise was

chosen due to its challenging speech-like nature, as well as

its likely presence in places where whispered speech SV is

bound to be used. Using the speaking-style dependent sys-

tem proposed in Section 4.7, experimental results are shown

for both normal and whispered speech in Table 16. As can be

seen for whispered speech, EER in noisy conditions increa-

sed for all feature representations as the SNR decreased, thus

suggesting the sensitivity of the features to ambient noise.

The benchmark feature MFCC is the feature set with worse

performance at all SNR levels. LFCC and exponential fre-

quency cepstral coefficients (EFCC), on the other hand, have

better performance when tested alone, thus suggesting that

a proper selection of frequency warping can improve robust-

ness against noise. Interestingly, while in clean conditions the

cepstral coefficients extracted from the WSS-warped spectra

(i.e., WSSCC) did not result in optimal results, they outper-

formed all other cepstral-based features with noisy speech.

A similar dependency on noise levels was observed with the

MHEC features, which were outperformed by the WIF fea-

tures. Regarding these latter features, the use of the gamma-

tone filter bank showed improved robustness against noise re-

lative to Gabor filter bank. Overall, our results suggest that

WSSCC combined with WIF are the most appropriate setup

for whispered speech SV under noisy environments.

Table 15: Gender detection error rates (%) for different feature sets

and number of Gaussian components (M ). Best results are highligh-

ted by number of Gaussians.

Feature M Gaussians

Set 1 5 10 20 30 40 50

MFCC 4.85 4.33 1.52 0.99 0.58 0.40 0.38

WIF 3.45 1.22 0.52 0.46 0.46 0.39 0.35

MHEC 3.04 1.11 0.70 0.60 0.38 0.35 0.30

Similar noise sensitivity of the various features was

also observed for normal speech. As seen previously, the

MFCC features were most affected by noise. Interestingly,

the WSSCC features also showed to be optimal in the very

noisy scenario (SNR=5dB) for normal speech, thus showing

the importance of frequency warping strategies for improved

robustness against babble noise. Overall, AM-FM based fea-

tures, as well as their combination with different cepstral fea-

tures, were not as beneficial for normal-speech speaker veri-

fication in noisy settings as they were with whispered speech.

Note that results presented in Table 16 were obtained by

assuming perfect normal/whispered speech classification in

the speaking-style dependent system (i.e., an oracle system).

However, different levels of noise can also affect this stage

prior to speaker verification. In order to be able to quantify the

total effect on system performance by the inclusion of noise,

a second experiment was performed. Here, the speaking-style

classifier described in [43] was used. EER comparison is

shown in Table 17. The last row in the table shows the spea-

king style classifier error rates for different noise level scena-

rios. As can be seen, normal/whisper classification errors re-

sult in 20%, 16% and 10% relative increases in EER for SNR

of 15, 10 and 5 dB, respectively. Despite this drop in perfor-

mance, the speaking-style dependent system exhibits reliable

performance even in noisy conditions. It is important to em-

phasize that results are not reported for the gender and spea-

king style dependent systems from Section 4.8 as the gender

detection classifier was shown to be very sensitive to babble

noise.

6 Discussion

There is evidence based on subjective studies suggesting that

invariant speaker identity across different vocal efforts exists

[13], i.e., a listener can recognize a speaker without training,

using only the experience with normally voiced speech of the

same speaker. Despite different strategies, such as frequency

warping, preprocessing, and alternate feature representations,

our results suggest that the invariant information between nor-

mal and whispered speech is not sufficient to achieve reliable

performance in an SV task for both speaking styles. A com-

promise must be kept in order to guarantee system perfor-

mance in normal and whispered speech. Notwithstanding, for

most of the cases evaluated herein, improvements in the mis-

matched condition were accompanied with reduced perfor-

mance in the matched scenario. Moreover, the strategies that

performed better for normal speech did not exhibit the same
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Table 16: EER(%) comparison for different feature representations under different ambient noise levels. Best EER values are highlighted in

bold per feature group for the tested SNR levels and the two train/test conditions.

W/W N/N

SNR level SNR level

Feature set 15 dB 10 dB 5 dB 15 dB 10 dB 5 dB

MFCC 13.42 22.53 31.82 12.34 19.18 26.98

LFCC 7.13 13.42 21.27 7.20 9.13 13.67

EFCC 7.25 13.30 21.21 6.96 9.07 13.43

WSSCC 6.35 9.59 15.78 7.20 9.38 12.95

WIF (Gamma.) 5.33 8.87 14.80 16.33 22.14 28.80

WIF (Gabor) 7.43 12.22 20.61 11.07 16.27 23.65

MHEC (Gamma.) 16.48 27.44 36.49 18.81 27.47 35.33

MHEC (Gabor) 13.24 23.37 32.59 12.76 18.63 26.74

LFCC+WIF (Gamma.) 5.51 10.19 18.45 7.86 10.95 16.70

EFCC+WIF (Gamma.) 5.21 10.07 18.15 8.17 11.07 16.27

WSSCC+WIF (Gamma.) 5.03 8.09 13.78 8.23 11.07 15.91

benefits for whispered speech. This makes it difficult to find a

speaker feature representation that stores speaker identity in-

formation invariant across both vocal efforts. More research

is needed to find vocal effort invariant features.

Table 17: EER(%) comparison in W/W condition using the two fea-

ture representations more robust to noise (see Table 16) and nor-

mal/whispered speech detector in [43]. Last row reports detection

error rate for the normal/whispered speech detector

SNR level

Feature set 15 dB 10 dB 5 dB

WIF (Gammatone) 6.90 10.12 16.40

WSSCC+WIF (Gammatone) 6.09 9.43 15.23

N/W detection error (%) 1.03 2.01 5.54

Frequency warping strategies, in the matched condition

for whispered speech showed interesting results. Simple ap-

proaches such as mel and linear scales showed to outperform

the WSS scale, which was designed specifically for whis-

pered speech. This WSS scale divides the frequencies into

several critical bands from 0 Hz to 4 kHz giving more em-

phasis to the frequencies where the resonance peaks of F1

and F3 are located. We found that the only advantage given

by this strategy is an error rate reduction in the mismatched

condition. While the mel scale places emphasis on lower fre-

quencies around F1 and F2, WSS can better handle the mis-

match condition due to the lower variation of the third for-

mant between normal and whispered speech relative to F1

and F2 [21]. Notwithstanding, the WSS scale showed useful

in scenarios involving babble noise for both whispered and

normally-voiced speech.

In addition, we found that whispered speech speaker ve-

rification performance was higher for female speakers. This

suggests that female whispered speech carries more speaker-

specific information that is captured by the investigated fea-

tures. In fact, most of the recent published research in the field

has been done only with females [6, 7], thus making the im-

provements seem more noticeable. This gender-dependency

may be due to the fact that formant shifts are more noticeable

in male speech than in female. As seen in Figure 4, and as

previously reported in the literature [21], F1 shifts can be up

to 71% for men and 52% for women ; F2 shifts can be up to

24% for men and 20% for women ; and F3 shifts can be of

10% and 4.8%, respectively [21]. Further investigation into

this gender dependency is still needed.

Regarding robustness to noise, we can observe that

LFCC and EFCC outperform MFCC features. One explana-

tion can be that babble noise highly affects low frequencies,

mostly between 0 Hz and 1 kHz. As a consequence, frequency

warping strategies placing more emphasis in such band (such

as the mel scale) will suffer higher degradation. The linear

scale, in turn, gives equal relevance to all frequencies. Mo-

reover, linear and exponential scales are not very different in

the range between 0 and 4 kHz, as shown in [6]. The fact

that WSSCC does not emphasize lower frequencies but place

more emphasis in certain bands where there is highly discri-

minative information, helps to explain why WSSCC achieved

the best performance amongst the tested cepstral based fea-

tures in a noisy environment. Additionally, WIF features also

showed high performance in noisy environments thus sugges-

ting that phase information assists with noise robustness for

whispered speech.

7 Conclusions

In this paper, the speaker verification (SV) task based on

whispered speech recordings was addressed. More specifi-

cally, the performance bounds of a standard GMM–UBM SV

system were obtained using several strategies, such as fre-

quency warping, sub-band analysis, alternate feature repre-

sentations, feature combination, as well as class-dependent
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modeling (i.e., speaking-style and gender-specific). Our ex-

perimental evaluation shows that mismatch train/test condi-

tions can highly affect the performance of a SV system, in-

dependent of the feature representation used. As in previous

studies in adjacent areas, it was shown that in order for a SV

system to handle both normal and whispered speech for prac-

tical applications, speaker model training had to involve data

of both vocal efforts. Such approach, however, resulted in

poorer verification performance for normal speech. To over-

come this limitation, speaking–style dependent models and

gender-specific models where used. In the latter scenario, fe-

male speakers were seen to benefit the most. Overall, feature

representations evaluated here have been mainly proposed for

normal-voiced speech applications, thus suggesting that al-

ternate feature representations, tuned for whispered speech

speaker verification, are still needed.

Lastly, regarding noise robustness, alternative frequency

warping techniques to extract cepstral coefficients and AM-

FM based features showed to offer more advantages in noisy

environments than conventional MFCC features.
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