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1 Introduction 

The Bellhop Gaussian beam solution formulated by Porter 

and Bucker [1] for acoustic propagation in an underwater 

environment is a complicated function of the environmental 

sound speed. In addition to the standard set of ray tracing 

differential equations, the incoherent intensity from the 

Bellhop algorithm is dependent upon a beamwidth factor 

obtained by the integration of a second pair of differential 

equations along the ray path.  This factor can be expressed 

in closed form for linear constant gradient sound speed 

profiles. The derivatives of these equations with respect to 

(w.r.t) the sound speed in each layer express the sensitivity 

of the Gaussian Beam method to uncertainty in sound speed. 

Using these derivatives, the uncertainty in the transmission 

loss can be estimated from the uncertainty in the 

environment. In this paper, we present a pictorial display of 

the Bellhop intensity derivatives w.r.t. the sound speed.  

 

2 Method 

The Bellhop Gaussian Beam incoherent intensity can be 

written as 
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where A is a constant, independent of beam number, that 

carries the cylindrical spreading and attenuation.  The 

symbols ℜ  contain the reflections coefficients from the 

boundaries (bottom and surface) and c is the sound speed 

The Gaussian factor depends upon n, the normal distance 

from the ray’s position to the receiver location, and the 

beam’s width q.  The value of q satisfies the second system 

of differential equations that Bellhop traces and is capped 

when small. The function q is therefore an extremely 

important term in the amplitude of Bellhop. 

 When the sound speed layers are assumed to be 

linear with constant gradients, a closed-form expression can 

be found for q that is inversely proportional to the sine of 

the ray angle and the gradient of the layer.  The function q 

can be differentiated with respect to the sound speed c in 

each layer, and therefore the intensity derivative dI/dc can 

be derived.  It is found that one of the terms in this function 

is inversely proportional to sin
3
θ, meaning that the 

sensitivity to the sound speed will be greatest as the beam is 

approaching a turning point.  

 The relation between the variance of the intensity 

σI
2
 and the variance of the random sound speed uncertainty 

σc
2
 is given in Papoulis [2] as 
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 This paper shows examples of the intensity 

derivatives’ spatial distribution which highlight the regions 

where the uncertainty in sound speed would produce the 

highest uncertainty in the propagated intensity.  

 

3 Results 

3.1 Test environment 

The sound speed profile used for these tests is shown in Fig 

1.  It is designed to provide structure to the acoustic field 

with both ducted and deep refracted rays.  It features a 

surface duct as well as a sub-surface duct to illustrate the 

intensity and its derivative captured in each segment.  The 

bottom is flat at 200m and the composition is hard sand to 

give good reflections.  The frequency is 1000Hz, and about 

400 beams are traced.  The lowest SSP point, is defined well 

below the bottom depth. 

 
Figure 1 Sound speed profile defined by 4 points, c1 thru c4.  

3.2 30 m source depth 

The transmission loss at 1000Hz is shown in Fig 2 and 

reveals the expected ray concentrations in the surface duct 

as well as a pair of deep refracted rays and some leakage 

from the surface duct. 

 

 
Figure 2 Full field transmission loss for 30m source. 

Some of the dB intensity derivatives are shown in Fig 3.  

The upper plot is the derivative w.r.t. the surficial sound 

speed dI/dc1.  This plot is substantially the same for the 

derivative w.r.t. the second sound speed point dI/dc2 

(therefore not repeated here). The lower plot is the 



 

derivative w.r.t. c3 and this plot is also substantially the 

same for the last SSP point dI/dc4 (not shown here).  

  

 
Figure 3 Full field intensity derivatives w.r.t. c1 or c2 (upper), c3 or 

c4 (lower).  

3.3 150 m source depth 

The transmission loss at 1000Hz for a 150m source (Fig. 4) 

shows the influence of the sub-surface duct as well as 

deeply cycled rays. 

 

 
Figure 4 Full field transmission loss for 150m source. 

 

 

 

Figure 5 Full field intensity derivative w.r.t. c1 or c4 (bottom, 

previous column), c2 or c3 (above). 

Some of the dB intensity derivatives are shown in Fig 5.  

The plot on the bottom of the previous column is the 

derivative w.r.t. the surficial sound speed dI/dc1.  This plot 

is substantially the same for the last sound speed point 

dI/dc4 (not shown here). The plot above is the derivative 

w.r.t. c3 and this plot is also substantially the same for the 

second SSP point dI/dc2 (not shown here). 

 

4 Discussion 

A comparison of Fig 3 with Fig 2 and Fig 5 with Fig 4 

shows that the intensity derivatives are largest along the 

edges of strong propagation intensity, particularly along 

caustic lines when the randomness is in the speeds defining 

the duct containing the source. The sound ducts that support 

strong propagation are also highly sensitive to changes in 

these speeds.  The first set of intensity derivative plots (Fig 

3) show strong sensitivity in dI/dc1 and dI/dc2 which define 

the surface duct in which the source is located, with much 

lower contributions from randomness in c3 and c4 because 

they lie outside the surface duct.  Similarly, the second set 

of intensity derivative plots (Fig 5) show strong 

contributions from the derivative of the intensity w.r.t. c2 

and c3 which define the sub-surface duct in which the source 

is located, but not as much sensitivity in dI/dc1 or dI/dc4.  

When the speed uncertainty is in the sound speed points 

outside the duct, only the deep cycled rays are affected. 

 

5 Conclusion 

Given the relationship between the variance of the intensity 

and the variance of the underlying sound speeds shown in 

Eq 2, the implication is that obtaining an accurate estimate 

for the speeds surrounding the source depth will be of most 

benefit in reducing the uncertainty in predicted transmission 

loss.   
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