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1 Overview  

This paper considers trans-dimensional (trans-D) Bayesian 

inference applied to a representative geoacoustic inverse 

problem of estimating seabed parameters from acoustic 

reflectivity measurements. Trans-D methods include model 

selection in inversion by sampling the posterior probability 

density (PPD) over models with differing numbers of 

parameters (dimensions) [1-3]. The approach is applied here 

to samplie over seabed geoacoustic models with a variable 

number of layers [2,3], providing seabed profile estimates 

with uncertainties that include the uncertainty in the model 

parameterization. However, trans-D sampling can be  

computationally intensive. Sampling efficiency is largely 

determined by the proposal schemes applied to generate 

perturbed values for existing parameters and for new 

parameters assigned to layers added to the model. 

Perturbations of existing parameters are considered in a 

principal-component (PC) space based on an eigenvector 

decomposition of the unit-lag parameter covariance matrix 

(computed from the history of sampled models, a diminishing 

adaptation) [3]. The relative efficiency of proposing new-

layer parameters from the prior versus a Gaussian distribution 

focused near existing values (the common approch) is 

examined [3]. Parallel tempering [4], which employs a 

sequence of interacting samplers with successively-relaxed 

likelihoods, is also applied to increase the acceptance rate of 

new layers.  The relative efficiency of various proposal 

schemes is compared through repeated inversions with a 

pragmatic convergence criterion [3].   

 

2 Theory 

Consider measured data d and a set of possible models {mk} 

indexed by Kk  (where K is a countable set); e.g., k can 

indicate the number of seabed interfaces in a geoacoustic 

model. Bayes' theorem for a hierarchical model including 

hyper-parameter k can be written [1] 
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In Eq. (1), P(k) and P(mk|k) represent prior probability 

densities, and P(d|k,mk) is the conditional probability of d 

given k and mk, which, for (fixed) measured data is 

interpreted as the likelihood L(k,mk). The PPD P(k,mk|d) is 

defined over the trans-D model space defined by the union of 

all fixed-dimensional spaces spanned by K. A Markov chain 

which samples the trans-D PPD can be obtained via 

reversible-jump Markov-Chain Monte Carlo (rjMCMC) 

sampling [1] in which proposed state (k’,m’k’) is generated 

from an existing state (k,mk) via a proposal distribution 

Q(k’,m’k’|k,mk) and accepted with the Metropolis-Hastings-

Green acceptance probability  
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In Eq. (2), T is referred to as the sampling temperature which 

relaxes the likelihood as used in parallel tempering (discussed 

below) and |J| is the determinant of the Jacobian matrix for 

transitions from (k,mk) to (k’,m’k’). For transitions which 

perturb the parameters of the present state but do not change 

model dimension (i.e., k’ = k) it follows that |J| = 1. The 

birth/death rjMCMC scheme [1,2] changes k by 1 (e.g., 

adds/deletes a single seabed interface) such that only the 

parameters added/deleted are changed, with proposed 

parameters in a birth step depending only on the parameters 

in the current state; in this case it also follows that |J| = 1.  

     The rjMCMC algorithm draws dependent samples from 

the trans-D PPD such that representative parameter estimates 

and uncertainties (e.g., marginal probability densities) can be 

computed. However, the approach can be computationally 

intensive, with efficiency largely determined by the 

effectiveness of the proposal schemes employed for 

perturbing existing parameters in fixed dimensions and for 

adding new parameters in birth steps. Several approaches 

have been considered to improve sampling efficiency 

(described in detail in [3]). These include: (1) Parallel 

tempering [4], in which a sequence of interacting Markov 

chains are run at a range of temperatures T ≥ 1 to successively 

relax the likelihood and improve the acceptance rate of birth 

and death steps. In this case either only the T = 1 chain is 

retained as parameter samples or all chains are retained and 

importance reweighting is applied to remove the sampling 

bias due to the non-unity sampling temperatures. (2) Drawing 

parameter perturbations in a PC parameter space determined 

by an eigenvector decomposition of the unit-lag covariance 

matrix estimated adaptively from the sampling history, 

effectively de-correlating parameters in the sampling. (3) 

Drawing new parameters in birth steps from their prior rather 

than from Gaussian distribution focussed near existing 

parameter values. Some of these approaches are considered  

in terms of sampling efficiency in this paper.  

 

3 Results 

Sampling approaches are considered here for the geoacoustic 

inverse problem of estimating profiles of seabed properties 

(sound speed, density, attenuation) from angle- and 

frequency-dependent measurements of acoustic reflection 

coefficients [2,3].   Figure 1 shows an example of the results 



 

of the trans-D geoacoustic inversion algorithm applied to 

(simulated) reflection coefficient data.  To consider the 

efficiency of various approaches to sampling, a set of 10 

inversions were run for each of four proposal schemes (PSs) 

with an automated convergence criterion based on examining 

the differences between parallel samplers [3]. PS1 consisted 

of PC parameter perturbations, geoacoustic parameters 

drawn from the prior in birth moves, and parallel tempering 

with 5 chains and Ti = 1.25i-1. PS2 is the same as PS1 except 

that importance re-weighting is applied such that marginal 

profiles are computed using all parallel-tempering chains. 

PS3 is the same as PS1 except that parameter perturbations 

are drawn from a Gaussian distribution centred at current 

values with standard deviation equal to 1/10 of the prior-

bound width. Finally, PS4 is the same as PS1 except that 

geoacoustic parameters in birth moves are drawn from a 

Gaussian distribution with standard deviation 1/30 of the 

prior-bound width and the number of parallel tempering 

chains is increased to 10 to help offset the resulting decrease 

in birth/death acceptance. 

     Figure 2 shows that proposal schemes PS1 and PS2 are 

similar in efficiency, indicating that retaining all samples in 

parallel tempering and applying importance re-weighting 

does not provide a significant benefit in sampling efficiency. 

However, both PS1 and PS2 are much more efficient than 

PS3 and PS4. This indicates that drawing new parameters in 

birth steps from the prior is more efficient than the 

commonly-used approach of applying a focused (Gaussian) 

proposal density. Mathematical reasons for this are discussed 

in [3], but are beyond the scope of this proceedings paper.   
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Figure 2: Comparison of the average number of iterations to 

convergence (with one standard-deviation error bars) for various 

proposal schemes (PSs) as described in the text.  

Figure 1: Example result of 

geoacoustics inversion results for 

(simulated) reflection coefficient 

data. The upper row, from left to 

right, shows marginal probability 

profiles of interface occurrence 

and of geoacoustic properties 

sound speed, density, and 

attenuation (solid lines indicate 

true values; hot colours indicate 

high probabilities). The middle 

and lower rows show the sampling 

history of the rjMCMC algorithm 

and marginal distributions for the 

misfit (negative log likelihood 

function) and the number of 

interfaces (the true number is 9). 

 

Figure 1: Example result of 

geoacoustics inversion results for 

(simulated) reflection coefficient 

data. The upper row, from left to 

right, shows marginal probability 

profiles of interface occurrence 

and of geoacoustic properties 

sound speed, density, and 

attenuation (solid lines indicate 

true values; hot colours indicate 

high probabilities). The middle 

and lower rows show the sampling 

history of the rjMCMC algorithm 

and the marginal distributions for 

the misfit (negative log likelihood 

function) and the number of 

interfaces (the true number is 9). 

 


