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1 Introduction 

Geoacoustic inversion surveys conducted in ocean 

environments often require expensive resources and 

challenging logistics and sometimes involve 

computationally intensive calculations. For example, 

moored or towed horizontal arrays or vertical arrays of 

hydrophones are often employed and complicated setups 

can introduce operational difficulties and increase costs in 

shallow-water inversion methods such as  matched-field 

inversion, reverberation inversion, transmission-loss 

inversion, etc. However, inversion of reflectivity data can be 

carried out by employing a single receiver, and holds 

considerable promise owing to more convenient instrument 

deployments and recoveries and less time-consumption for 

forward-model computations as full-wave calculations may 

not be required. 

 This paper describes a nonlinear Bayesian inversion 

approach applied to broadband reflection data [1] at 

multiple frequencies for geoacoustic properties of river sand 

at the base of an anechoic water tank at Harbin Engineering 

University, China.  

 

2 Bayesian Inversion Theory and Algorithms 

2.1 Bayesian formulation 

The nonlinear approach to invert reflectivity data for 

geoacoustic properties is based on Bayes rule, which can be 

expressed as [1] 
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The goal of  Bayesian inversion is to interpret the multi-

dimensional posterior probability density (PPD), P(m|d,F), 

for optimal estimates of the model parameters m and their 

uncertainties based on observed data d  and prior 

information P(m); here F represents the choice of model 

parameterization (e.g., the number of sediment layers). 

These properties include the maximum a posteriori (MAP) 

model and marginal probability distributions etc, which are 

defined, respectively, as 
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Joint (two dimensional) marginal densitites can be 

computed analogously to Eq. (3). Parameter uncertainties 

are also quantified in terms of credibility intervals. For 

example, the   highest probability density credibility interval 

represents the interval of minimum width containing  of the 

area of the marginal distribution (50% and 95% credibility 

intervals are used in this paper).  

 

2.2 Numerical Optimization 

In this paper, delayed rejection adaptive Metropolis 

(DRAM), a Markov Chain Monte Carlo (MCMC) sampling 

method, is applied to nonlinear Bayesian inversion of 

reflectivity data. It can provide an effective numerical 

approach to determine MAP estimates and to evaluate 

integrals Eq. (2)-Eq. (3) to quantify parameter estimates, 

uncertainties and inter-relationships [2].  

DRAM is a combination of two ideas for improving the 

efficiency of Metropolis-Hastings type MCMC algorithms, 

i.e. adaptive Metropolis (AM) and delayed rejection (DR). 

In adaptive Metropolis, the covariance matrix of a Gaussian 

proposal distribution is adapted on the history of the 

Markov chain. In delayed rejection, upon rejecting a 

proposed candidate model, a second (smaller) move is 

proposed instead of simply rejecting the initial move. 

Moreover, the acceptance probability of the second 

candidate move is formulated so as to preserve reversibility 

of the Markov chain. Once convergent MCMC chains are 

established, the MAP parameter estimates can be 

determined by Eq. (2), while parameter uncertainties and 

inter-relationships will be further analyzed according to Eq. 

(3). 

 

2.3 Model Choice 

Choosing an appropriate model parameterization F is an 

important aspect for Bayesian reflectivity inversion. For 

parameterized models, measuring the probability of 

observed data arising under the assumed model is an 

effective way to estimate the most appropriate model 

parameterization. The Bayesian information criterion (BIC) 

is applied here to approximate Bayesian evidence in terms 

of minimizing 
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3 Inversion Results and Analysis 

3.1 Model Selection Results 

MAP models were estimated by DRAM for model 

parameterization including 1, 2, and 3 layers (including a 

halfspace). The results of the model choice are shown in 

Figure 1. Figure 1(a) shows the misfit function (negative log 

likelihood) decreases rapidly with layers changing from 1 to 
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2, while decreases much less in going from 2 to 3 layers. 

Considering the penalty term for the number of parameters 

for every possible model shown in Figure 1 (b), Figure 1 (c) 

indicates BIC has its minimum at 2 layers, showing this is 

the maximum number of layers that can be reliably 

estimated from the observed data. 

 
Figure 1: Results of the model choice in terms of: (a) 

misfits, (b) number of parameters, (c) BIC as a function of 

layers numbers with its value shifted to unity at its 

minimum and shown in log scale for display purposes. 

 

3.2 Inversion Results 

Figure 2 shows good agreement between the observed data 

and data predicted for the inversion results at 31.5 kHz, with 

50% and 95% credibility intervals quantified. Figure 3 

shows joint marginal probability distributions of parameters 

of interest for the two-layer model to illustrate parameter 

uncertainties and inter-parameter relationships.  

 
Figure 2: Measured reflection coefficient data (squares) and 

predicted data for the MAP model (line) and 50% and 95% 

credibility intervals from the inversion at 31.5 kHz. 

 

 

Figure 3: Joint marginal probability distributions of 

parameters of interest 

 

4 Summary and Discussion 

This paper presented a nonlinear Bayesian inversion for 

reflection coefficient data to estimate geoacoustic properties 

and uncertainties of sand layers at the base of a water tank. 

The MAP inversion results for the first layer suggested that 

this layer is clayey sand which is consistent with a visual 

observation.  

 

References  

[1] Dosso, S. E. and Holland, C. W. Geoacoustic uncertainties 

from viscoelastic inversion of seabed reflection data. IEEE Journal 

of Oceanic Engineering, 31(3): 657-671, 2006. 

[2] Laine, M. Adaptive MCMC methods with applications in 

environmental and geophysical models. Finnish Meteorological 

Institute, 69: 1–46, 2008. 

[3]Jensen, F. B., Kuperman, W. A., Porter, M. B. and Schmidt H. 

Computational Ocean Acoustics. Springer-Verlag: New York, 

USA, 2000.  


