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1 Introduction 
Forced alignment is an automatic speech recognition 
procedure frequently employed in the speech sciences. It is 
typically used to time-align a string of phones with a speech 
recording on the basis of some operationalization of 
acoustic similarities to averaged representations of the 
phones over a corpus. Ordinarily these similarity measures 
are not of interest to researchers, who simply want to know 
where in time the phones are. This study investigates the 
potential usefulness of these alignment scores for phonetic 
research, considering the phonetic properties which are and 
are not represented in the scores. The hypothesis is that 
these scores can be used to infer acoustic relationships along 
some dimensions between the aligned speech and the corpus 
on which the models were trained. 

Figure 1: Sample waveform for a portion of a TIMIT sentence 
shown with the phone sequence aligned to it. 
 
2 Method 
2.1 What do alignment scores mean? 
Forced alignment is essentially a system of optimized 
matching. The models of the system are trained on a corpus 
to provide an averaged acoustic representation of each 
phone in the corpus. During alignment, the system is given a 
string of phones and a sound recording, and it apportions 
continuous sections of the sound recording to the phones to 
maximize the similarity of the aligned portions to the 
averaged models. The typical forced aligner (like the Penn 
Aligner) is implemented using Hidden Markov Models [1]. 
This approach to symbol-sound mapping has a variety of 
practical applications. 

For the problem of isolated word recognition, if each 
spoken word is represented by a sequence of speech vectors 
or observations O, defined as;  O = o1,o2,....oT. The isolated 
word recognition problem can then be regarded as that of 
computing;  arg max {P (wi|O)}, where wi is the i’th 
vocabulary word. However, since this probability is not 

computable directly we use the Bayes’ rule which gives us: 
P (wi|O) = (P (O|wi)P(wi))/P(O) 
 
2.2 Modification in the typical forced aligner 
A typical forced aligner, like the Penn Forced Aligner [4] 
takes two inputs, the audio file which contains the speech, 
and the text file with the transcription of the speech. The 
aligner produces a PRAAT [2] TextGrid file as output, 
which contains the alignment in typically two tiers: (1) the 
word level, and (2) the phone level (Figure 1). This output 
contains the name of the word or the phone, and the start 
and end time of occurrence of the same within the speech 
file. Within the alignment script, the Penn Aligner calls the 
function HVite. The original output of HVite is in the form 
of a MLF file, which contains, among other things the 
probability score which the Viterbi algorithm computes 
while aligning the file. This output, from the Hidden 
Markov model is of interest to us. In order to investigate 
more about the score, the code to convert the MLF file to 
the TextGrid was modified to simultaneously print these 
probability scores alongside the name of the phone/word. 
 
2.3 Measuring distances between vowels 
In order to test the hypothesis that the log likelihood scores 
obtained from forced aligners can be employed to tell us 
about phonetic distances, these scores need to be compared 
with an existing measure of distance. A straightforward 
perceptually relevant geometric distance can be computed 
for vowels in the F1 & F2 space, so we selected this metric 
for comparison. A set of eight vowel phones was selected 
and the distance between every two pairs was measured 
using the standard F1-F2 technique, and by the forced 
aligner. In order to measure the distance between each pair, 
every speech file was aligned with the text file for every 
vowel (tokens of [i] were aligned with the [ɪ] phone, the [e] 
phone, the [ɛ] phone, etc.). It was noticed that for each 
vowel ranking obtained in the descending order of scores 
matched approximately with the increasing order of F1-F2 
distances. 
 
2.4 Training on HTK 
Different kinds of training have an effect on the pattern of 
alignment scores obtained. As a result, two sets of training 
models were created after training on different sets of 
speech data. The first model was trained on the TIMIT 
corpus [5], which is composed of read sentences. The other 
model was trained using the Buckeye corpus [3], which 
contains interview recordings. The two corpora were chosen 
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to compare the differences in the patterns of scores from the 
read speech and the conversational speech models. 
 
2.5 Aligning larger corpora 
For testing purposes a holdout section was selected from 
both TIMIT and Buckeye. While the TIMIT corpus already 
has a test section in the corpus, a bootstrapped holdout 
section was created for the Buckeye corpus. For both these 
sections, they were first aligned with their original 
transcription, using the models trained on data from the 
same corpus. From the TextGrid files obtained by this 
alignment, a list of files containing each vowel was created. 
The original vowel in the file was substituted one by one 
with every other vowel in the list ([i] was substituted with 
the [ɪ] phone, the [e] phone, the [ɛ] phone, etc. one by one). 
The scores of each such alignment was recorded. In this way 
we obtained the cross comparison scores between each 
vowel pair.  

 
3 Results 
A ranking of this cross comparison is shown in Table 1. The 
log likelihood scores were compared to the F1-F2 phonetic 
distances. The result of a regression for each vowel is shown 
in Table 1. 

Table 1: LogLik ranking & correlations by TIMIT test vowel. 
Vowel Log Likelihood ranking Correlation 

aa [aa, ow, ah, ae, ey, uw, ih, iy]  -0.847 
ae [ae, ey, ah, ow, aa, ih, uw, iy] -0.61 
ah [ow, aa, ah, ae, ih, ey, uw, iy] -0.761 
ey [ey, iy, ae, uw, ih, ow, ah, aa] -0.800 
ih [ih, ae, iy, uw, ey, ow, ah, aa] -0.761 
iy [iy, ey, uw, ih, ae, ow, ah, aa] -0.846 

ow [ow, aa, ah, ae, uw, ey, ih, iy] -0.884 
uw [ow, uw, iy, ih, ey, ah, ae, aa] -0.429 

 
These results show a negative correlation with the F1-F2 
distances measured manually. However, when a similar 
analysis was done with Buckeye aligned on the two sets of 
models, and TIMIT aligned on Buckeye, the negative 
correlation appears weaker (Table 2). 

Table 2: Correlation coefficients comparing data from the 
different models. 

Vowel 
Buck-
Buck 

Buck-
TIMIT 

TIMIT-
TIMIT 

TIMIT-
Buck 

aa 0.015 -0.102 -0.848 0.036 

ae -0.222 -0.312 -0.613 -0.428 
ah -0.021 -0.090 -0.761 0.100 
ey -0.576 0.522 -0.800 0.155 

ih 0.056 0.480 -0.762 0.101 
iy -0.074 0.163 -0.846 0.164 

ow -0.109 -0.127 -0.884 -0.167 
uw 0.054 0.108 -0.430 0.047 

 

When comparing the Buckeye corpus model we find that the 
correlation coefficients between distances and scores for 
models trained on both corpus is low. With the TIMIT 
corpus the correlation coefficients are high in general when 
TIMIT is aligned with TIMIT models, except for ‘uw’ and 
the coefficient is low when it is aligned on Buckeye models. 
Figure 2 illustrates the distribution of scores for the 
diphthong [aɪ] for the two different holdout datasets when 
fit using the models from the two different corpora. This 
example illustrates the very different results that can be 
obtained by using different models and data. 
 

 
Figure 2: Distributions of alignment scores for the same phone on 
TIMIT and Buckeye, trained on the two corpora. 

4 Conclusion 
These probability measures seem to show a relationship 
with some acoustic characteristics of the segments. It is 
clear that these scores behave differently with different 
training, and this relationship may be exploitable to assess 
typicality of sounds within a given corpus context. 
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