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Résumé

Dans la présente étude, une méthode de cartographie des mouvements de rayons dans les espaces géométriques
tridimensionnels a été établie théoriquement en utilisant un algorithme de radiosité (ray-tracing). Les chemins le long
desquels se propage le rayon acoustique dans des espaces clos rectangulaires et concaves sont décrits selon 1’algorithme de
radiosité. La localiation et la direction du rayon acoustique a des points arbitraires sur les chemins ont été explorés. Les plus
grands exposants de Lyapunov (PGEL) des systemes de rayons dans les espaces rectangulaires et concaves ont été
déterminés en utilisant I’algorithme de Wolf selon les points sur les chemins de propagation avec une longueur égale dans la
série chronologique. Une nouvelle géométrie chaotique concave est produite avec un PGEL positif. Les PGEL de la
dynamique de rayon entre les deux espaces géométriques ont été comparés et les résultats indiquaient que le rayon se déplace
de maniére réguliere dans I’espace rectangulaire avec un PGEL de 0 tandis que le rayon adopte un comportement chaotique
dans I’espace concave avec un PGEL positif. Les champs acoustiques dans chacun de ces espaces ont été¢ décrits en
appliquant le chaos du rayon a I’acoustique des batiments. La diffusion acoustique a été évaluée selon I'uniformité des
niveaux de pression acoustique a différentes positions dans le champ acoustique en utilisant un logiciel d’acoustique de la
salle Odeon. Les résultats ont démontré que le modele proposé a le potentiel de simuler la dynamique chaotique des rayons
acoustiques dans les espaces clos.

Mots clefs : diffusion, ray-tracing, radiosité, plus grand exposant de Lyapunov, algorithme de Wolf, acoustique des salles

Abstract

In this study, a method of mapping ray motions in three-dimensional geometrical spaces was theoretically established using
the ray-tracing algorithm. The paths along which the acoustic ray propagates in enclosed rectangular and concave spaces are
described according to the ray-tracing algorithm. The location and the direction of the acoustic ray at arbitrary points on the
paths were explored. The largest Lyapunov exponents (LLEs) of the ray systems in the rectangular and concave spaces were
determined using the Wolf algorithm based on the points on the propagation paths with equal length in the time series. A new
chaotic concave geometry is produced with a positive LLE. The LLEs of ray dynamics between the two geometrical spaces
were compared and the results showed that the ray moves in a regular fashion in the rectangular space with an LLE of 0
whereas the ray exhibits chaotic behavior in the concave space with a positive LLE. The acoustic fields in both of these
spaces in were described by applying ray chaos to the building acoustics. The acoustic diffusion was evaluated based on the
uniformity of the sound pressure levels at different positions in the sound field using Odeon room acoustics software. The
results showed that the proposed model has the potential to simulate chaotic dynamics of acoustic rays in enclosed spaces.

Keywords: diffusion, ray-tracing algorithm, largest Lyapunov exponent, Wolf algorithm, room acoustics

dynamics behavior in underwater acoustics. The results
showed that the acoustic ray system was randomly
interfered underwater because of the characteristics of the
inhomogeneous seawater medium. Studies on the effects of
random disturbance on the characteristics of the acoustic ray
system characteristics showed that the acoustic ray motions
changed from regular to irregular or the original irregular
motions of the acoustic rays were intensified when a random
disturbance was introduced into the system and the intensity

1 Introduction

Particle billiard theory is originally wused in the
electromagnetic field [1, 2] and in quantum mechanics
studies [3—5]. However, in room acoustics, the scenario in
which the sound rays bounce back and forth in an enclosed
space can be analyzed by establishing the sound ray model.
Tracking acoustic arrays is crucial for ocean acoustics
applications such as underwater acoustic communication

and ocean acoustic tomography. Li et al. [6], Brown et al.
[7], and Makarov et al. [8] used the ray chaos model to
investigate the effects of sound velocity on the system
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of the random disturbance was increased. In the absence of
reflections underwater, the increased disturbance of the
internal waves on the sound velocity resulted in a system
with a positive Lyapunov exponent. This increased the
chaotic motion of the acoustic rays and expanded the
chaotic region [9]. Similar to the results obtained for
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underwater acoustics, Kawabe et al. [10] found that
perturbations in the sound velocity resulted in a chaotic
acoustic ray propagation due to the temperature fluctuations
caused by the inhomogeneous medium in the room. For
example, for a two-dimensional space with an
inhomogeneous medium, there were slight deviations in the
acoustic ray trajectories such that the acoustic rays did not
travel in a straight line because of perturbations. The
acoustic ray trajectory was curved when there were
temperature fluctuations in the medium. Ray chaos was
observed in the domain when perturbations due to the
inhomogeneity of the medium were considered in the
analysis. However, for a homogeneous medium, the non-
interacting rays would always propagate along a straight
trajectory between the boundaries of the domain. According
to the billiard theory, the chaotic behavior of acoustic rays is
closely related to the geometry of the enclosed space.
Koyanagi et al. [11] used the square well potential model to
simulate the acoustic ray motions in a room where the
absorption was uniformly distributed along the boundaries
and the results showed that the square well potential model
can be used to determine the reverberation time in a two-
dimensional enclosed space. They computed the largest
Lyapunov exponents (LLEs) and they believed that
reverberation of the sound field was related to the ray chaos
of the billiards in the polygons with smooth convex walls.
Yu and Zhang [12, 13] used 13 acoustic ray equations to
describe the acoustic ray motions in a two-dimensional
semicircle stadium model and computed the Lyapunov
spectrum of the ray systems using the classic Wolf
algorithm. They obtained the power law of the Lyapunov
exponents used in architectural acoustics in order to
describe the characteristics of acoustic defects such as
diffusion, flutter echoes, and acoustic focusing. Most of the
studies published to date are focused on two-dimensional
systems because the simplest form of classical chaos is two-
dimensional. However, a three-dimensional system is a
more accurate representation of the real-world system and it
has more practical significance in architectural acoustics.
Hence, this work is focused on investigating acoustic ray
chaos in a three-dimensional enclosed space based on a two-
dimensional enclosed space.

The remainder of this paper is organized as follows.
The ray-tracing algorithms used to track the trajectories of
acoustic rays in the geometrical space are presented in
Section 2. The LLEs of ray systems in the rectangular and
concave enclosed spaces were calculated and presented in
Section 3, in which the chaotic characteristics for the
concave geometry are derived. The ray systems are then
used for building acoustics and the results are validated
using Odeon room acoustics software, as presented in
Section 4. Finally, the conclusions drawn based on the
findings of this study are presented in Section 5 and the
significance of the method proposed in this work is
highlighted.
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2  Method
2.1 Ray-tracing algorithm

The points in the time series used to determine the LLEs are
extracted from the reflection paths in a three-dimensional
geometrical space using the random ray-tracing algorithm.
The ray moves in a straight trajectory with an initial
direction from a source in the geometrical space and the ray
then changes its direction when it encounters a surface. In
this algorithm, it is assumed that only specular reflections
occur and therefore, the angle of reflection is equal to the
angle of incidence at each point on the surface. Figure 1
shows the ray reflections on the rigid smooth boundary of a
geometrical space.

boundary

Figure 1: Specular reflections on the rigid smooth boundary of a
geometrical space.

It is assumed that the acoustic ray moves in the domain
(which is determined by the geometrical space) depending
on the reflections at the boundaries:

ﬁ(x,y,z)=0, ieZ’,d>1 (D

The launching ray @ exerted by the source S is
given by:

x=x,+at
y=y,+bt ,1€R, )
z=2z,+ct

Where S (xo, Yoo ZO) represents the coordinates of the

source and U = (a,b,c) represents the directional vector

of the incident ray, which is not normal to the boundary. A
singularity will occur if the directional vector is normal to
the boundary.

The reflection point, O(x, +at,, , y, +bt

min’

ZO +C[min) iS
determined by substituting Eq. (2) into Eq. (1), where the
line intersects the surface of the boundary:

ﬁ(xO +a[m1n’y0 +b[min’z() +Ctmin): 0 (3)

Here, the subscript “min” stands for minimum
parameter “¢”, which is required for the intersection.
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The normal vector across the reflection point is
expressed as:

’71 — af‘(xmm ’ymm ) me ) af‘(xmm ’ymm ’ me) af(xmm ’ymm ) me ) (4)
ox ' oy ’ oz

The normal vector )7 is determined from the projection
method, as follows:

g ©))

Hence, the direction of the reflected ray OS’ is
confined by @ =0 +2y .

The reflection path in a three-dimensional enclosed
space is traced by successive iterations of the new reflection
points and directions of the reflected rays.

The following cases need to be avoided because they
result in singularities:

e The acoustic ray hits into a corner;

e  The acoustic ray is normal to the boundary surface;

e The reflected acoustic rays are all on the same
plane.

The acoustic ray will lose its consistency in the first and
second cases whereas the acoustic ray has consistency in the
third case, but it will not reflect on all surfaces.

Based on the above mapping procedure, the position
and direction of the acoustic ray can be obtained at any
arbitrary point on the propagation paths in a three-
dimensional geometrical space, even for complex
geometries. The time series used to compute the LLEs is
derived from the points on the propagation paths. Two
geometries (rectangular and concave enclosed spaces) have
been widely studied in architectural acoustics. In this study,
the LLEs were introduced to the ray systems in rectangular
and concave enclosed spaces. Previous studies have shown
that the propagation of an acoustic ray in an enclosed space
is analogous to the particle trajectory in a billiard system
within a high-frequency limit [10, 14]. Figure 2 shows the
acoustic ray motions in the rectangular and concave
enclosed spaces.

The ray-tracing algorithms were used to determine the
acoustic ray motions and derive the time series in order to
perform the Lyapunov exponent analysis. In the numerical
simulations, the incident ray is launched with an initial
direction from a source in the geometrical space. Many
simulation runs were performed and it was found that
changes in the source location and direction of the launching
ray did not affect the LLE values. Because the continuity of
the reflected rays is guaranteed, the method can be used to
simulate motions of acoustic rays reflecting off a surface
from an arbitrarily located source in various geometrical
spaces. The method can also be used to simulate ray
motions irrespective of the launching direction, provided
that the acoustic ray is not perpendicular to the boundary
surface.
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(b)

Figure 2: Ray motions in the (a) rectangular and (b) concave
enclosed spaces.

With the exception of the three singularities mentioned
previously, it can be seen that the acoustic ray is launched
from the source in the geometrical space in the direction
indicated by the directional vector. It is possible to derive
the directional vectors for the rectangular and concave
geometries by tracing the ray propagation.

The ray has four (2> = 4) and eight (2° = 8) possible
direction values for the two-dimensional and three-
dimensional rectangular geometries, respectively. The base
number “2” refers to the reverse directions in which the ray
rebounds whereas the exponent number refers to the
dimension of the space. For an initial directional vector (a,
b, c), there are eight possible directions for the acoustic ray
in the rectangular geometry: (a, b, c), (a, -b, -¢), (a, -b, ¢),
(a, b, -0), (-a, -b, -¢), (-a, -b, ¢), (-a, b, -¢), and (-a, b, -c).
However, there is a large number of directions for the
acoustic ray in the concave geometry. MATLAB computer
aided engineering software (Release 2012b, MathWorks,
Inc., USA) was used for the numerical simulations. The ray
was launched from the source point (1, 1, 1) in the direction

of (1,tana,tana*,/1+(tana)z), where a = 75°. This

means that the ray is inclined at angle of 75° from the
vertical planes X-Y and X-Z in the geometrical space. The
length, width, and height of the rectangular space are 6.80,
6.62, and 5.10, respectively. The length, width, height, and
radius of the concave space are 6.80, 6.62, 3.21, and 3.00,
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respectively. The elements of each directional vector refer to
the ray direction from the point of origin to the vector point.
The large number of directional vectors creates a vector
field, which gives the directional vector of the acoustic ray
at every point. Figure 3 shows the projection of the
directional vectors onto the X-Z and Y-Z planes (denoted by
the blue asterisks), which is obtained by substituting the y or
x-coordinate of the directional vectors with 0. The acoustic
ray reflects 10000 times in the concave space. The ray
propagates in eight directions in the rectangular space
whereas the reflected ray in the concave space propagates in
different directions, where the directional vectors projected
onto the X-Y and X-Z planes follow an angular distribution
(Figure 3(a)) whereas the directional vectors projected onto
the Y-Z plane follow a circular distribution (Figure 3(b)).
There is an exponential proliferation of acoustic rays in the
concave space due to the sensitivity of the ray trajectories to
the initial conditions for a chaotic system.

By applying this ray-tracing model in room acoustics,
the ray will propagate repeatedly in a small number of
directions in the rectangular space, which produces acoustic
effects because the sound waves are reflected back and forth
between the parallel reflective surfaces. This phenomenon is
known as “flutter echo” in room acoustics, in which strong
points are generated at locations where the sound energy is
concentrated in one direction.

Y
(b)

Figure 3: (a) Angular distribution of the directional vectors

projected onto the X-Z plane and (b) circular distribution of the

directional vectors projected on the Y-Z plane (b) in the concave

space.
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In contrast, the concentration of sound energy in one
direction is reduced and the uniformity of the sound field is
improved in a concave space because the ray propagates
from various possible directions in the Y-Z plane.

Figure 4 shows the distributions of Z-values taken from
150 points on the propagation paths of equal length for the
rectangular and concave spaces. In this case, equal length
means that the ray is divided into length intervals (dL) of
equal time ¢ for a specific sound propagation velocity c. The
Z-values were plotted against the number of points N for the
ray trajectories with multiple reflections. The Z-value
distributions clearly show the time series of the ray
trajectories in the rectangular and concave enclosed spaces.
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Figure 4: Distributions of Z-values taken from 150 points on the
ray propagation paths of equal length for the (a) rectangular and
(b) concave enclosed spaces.

2.2 Determination of the LLEs

The Lyapunov exponent is a quantity that characterizes the
rate of separation of infinitesimally close ray trajectories. In
other words, the ray separation is sensitive to the initial
conditions of the system. The system is considered chaotic
if at least one Lyapunov exponent is positive [15]. The
sensitivity of the ray separation to the initial conditions of
the chaotic system makes it possible to investigate the
diffusive behavior of rays in various enclosed spaces.
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Assuming that there are two (usually the nearest)
neighboring points in the phase space at time 0 and time ¢,
the distances of the points in the /" direction are denoted as
lox;(0)I and lox;(t)l, respectively. The Lyapunov exponent is
then defined by the average growth rate 4; of the initial
distance, which is given by'

o= ()

©)
20

i —hm log2 ‘

The set {/11,---,/1

max} is called the Lyapunov spectrum.
Although the full Lyapunov spectrum can provide detailed
information on the dynamic behavior of the system, it is not
practical to compute the full Lyapunov spectrum because of
the lengthy computational time. For this reason, LLEs are
computed to validate a chaotic system rather than the
complete Lyapunov exponents. In this study, the Wolf
algorithm was used to determine the LLEs of the ray
systems in the rectangular and concave spaces based on the
time series.

The Wolf algorithm estimates the LLEs from a finite
number of time series values by keeping the track of the
exponentially divergent adjoining trajectories, as shown in
Figure 5. The time series data for a single coordinate of the
chaotic system (measured at equal time intervals) was
considered in this study and the degree of the trajectory
divergence was evaluated at regular intervals. There are five
steps involved to determine the LLEs. First, select the point
closest to the initial point on the fiducial trajectory at time
ty. The distance between both of these points is denoted as

L(to) . Second, let L (tl) denote the distance between two

points on the fiducial trajectory and neighboring trajectory
at a later time #;. Next, compute the exponential ratio of

l(tl) to L(to). Third, select the closest point at #; such

that 0, is minimum and measure the distance L(tl). Fourth,

repeat the second step at ¢, after time Az and then compute
the exponential ratio. Fifth, repeat the above procedure M
times and compute the average exponential ratio. The LLE
is defined as:

L(t,)
LLE—— lo k
MA ; gzL(tkl)

Where At = t, — t,_; and M is the number of iterations.
The parameters L (tk) and L(tk_l) are calculated from the

O]

Euclidean distance.

The LLEs for the rectangular and concave spaces were
determined based on the time series points on the trajectory
with equal length intervals dL, where the values on the z-
coordinate are taken as its own series, as shown in Figure 6.

It can be seen that the LLE values are ~0 and ~0.3 for
the rectangular and concave spaces, respectively. It is
evident that there is a positive Lyapunov exponent for the
ray system in the concave geometry, which indicates that
chaos has truly developed.
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Figure S: Procedure used to estimate the LLEs from the
experimental data.
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Figure 6: LLEs of the ray systems in the (a) rectangular and (b)
concave enclosed spaces.

In contrast, an LLE value of 0 indicates that two nearby
rays will not separate exponentially with respect to time. In
other words, the ray moves in a regular fashion in the
rectangular space. Nevertheless, when the LLE value is
positive, the ray motion shows chaotic characteristics, such
as that in the concave space. In room acoustics, a ray system
with a positive Lyapunov exponent indicates the ray
trajectories are sensitive to the initial conditions of the
system and the rays may be diffuse [16].

3 Simulations of room acoustics using Odeon
software

In room acoustics, sounds may propagate as rays at high
frequencies. Ray acoustics is deemed to be a part of the ray
moments in the geometrical space and therefore, it is
possible to account for ray chaotic behavior in building
acoustics. Empirically, a perfectly diffused enclosed space is
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defined as one in which there are equal levels of sound
energy at all positions and the sound energy flows equally in
all directions upon excitation by a source. The definition of
a diffuse field is probably adequate from a conceptual
standpoint, but it does not provide much information from
an operational viewpoint. At present, there are no practical
direct metrics for this concept and there are no reliable
methods to determine the diffusion levels in an enclosed
space. Hence, it is not possible to state the diffusion level
required for a given application. For this reason, most
researchers attempt to create a test environment that is
representative of an ideal physical scenario using
mathematical models that are developed based on the
current knowledge on ray theories. The diffusion levels of
an enclosed space can be evaluated using either one of the
following methods: (1) spatial uniformity of pressure
method, which involves measuring the spatial variations of
the sound pressure levels (SPLs), (2) cross-correlation
analysis method, which involves measuring the degree of
correlation between the sound pressure measurements at
different microphone positions, (3) acoustic wattmeter
method, which involves measuring the vector energy flow,
(4) directional diffusion method, which involves measuring
the sound levels in different directions using a directional
microphone, and (5) multifractal method, which involves
assessing the diffusion levels using a singularity spectrum
corresponding to a monofractal signal [17-20]. At present,
there are limited means to quantify the diffusion levels in an
enclosed space. This work is focused on exploring the
diffusion levels of sound field based on the uniformity of
the SPLs in the enclosed space.

It has been shown [21] that the source directivity
directly affects the uniformity of the sound field. In reality,
the sources used in auditoriums, especially those produced
by electro-acoustical instruments, are usually directional.
Thus, studies on the uniformity of room acoustics with a
directional source are of great significance to architectural
researchers and designers during the early stages of design.

The acoustic diffusion was evaluated using Odeon 12.2
room acoustics software, which is a software typically used
to simulate room acoustics with complex geometries [22]
based on the image source and ray-tracing methods. In order
to approximate the specular reflections on the rigid walls,
the absorption and scatter coefficients were assigned a value
of 0.01 and 0, respectively. Both the absorption and scatter
coefficients were assumed to be uniformly distributed over
all surfaces in the enclosed space. A directional source was
used for the simulations. Because a directional source was
used in the model (where the directivity of the source is at
an angle), the sound transmission is more complete due to
the rays coming from various directions compared to a
source with stronger directivity. Even though the default
line number provided in the Odeon software was 2000,
many studies have shown that the directivity of the source is
influenced by a line number up to 500. Thus, a suitable line
number needs to be chosen for the simulations when the
directivity of the source is considered. The line number
should be within a range of 25-100 because the directivity
of the source is at an angle. It is found in this study that a

10 - Vol. 46 No. 3 (2018)

higher line number reduces the effect of directivity whereas
a line number within a range of 100-500 leads to obscure
results. In contrast, the directivity of the source does not
affect the diffusion of room acoustics when the line number
is greater than 500. Increasing the line number may reduce
dependency of the acoustic performance on the geometry of
the enclosed space, but this comes at the expense of a loss of
directivity. Even though increasing the line number will
improve the ray distribution in both rectangular and concave
enclosed spaces, the line number should be limited to a
maximum of 500 to ensure that the directivity of the source
is not entirely lost.

For the simulations, the line number required is
available within the range in which the directivity of the
source is valid. In this study, the line number and impulse
response length were set at 25 lines and 5000 ms,
respectively. It is found that temperature and humidity will
not significantly affect the results, indicating that the sound
ray still propagates in a straight trajectory within a normal
range at high frequencies. Information of the directivity of
the loudspeaker is provided by the CLF Group [23].
Because the software is based on geometrical acoustics,
only the sample directivity balloons for selected octave
bands (1000, 2000, 4000, and 8000 Hz) were chosen for this

work, as shown in Figure 7.
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Figure 7: Directivity patterns of the “DNH-Tunnel-500" source at
different frequencies [17]. The sample directivity balloons for the
loudspeakers were used for validation, with the axis pointing to the
left as “front” in three dimensions for the following octave bands:
(a) 1 kHz, (b) 2 kHz, (c) 4 kHz, and (d) 8 kHz.

The SPLs at 20 receiver positions obtained from the
simulations were compared to evaluate the status of the
sound field. Figure 8 shows the top view and side view of
the spatial distribution of the source and receivers. The
source is positioned at one corner of the enclosed space and
the receivers are positioned in a grid, as indicated by the
numbered circles. These receivers are considered to occupy
the whole space. The distances between the source,
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receivers, and surfaces comply with the requirements of the
ISO 3382 standard. The positions of the source and
receivers in the rectangular and concave enclosed spaces are
summarized in Table 1.

Table 1: Positions of the source and receivers in the rectangular
and concave enclosed spaces.

Rectangle

Concave

Rectangle

Concave

(LL1)

(LL1) N

(LL1)

(LL1)
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Figure 8: (a) Horizontal and (b) vertical layouts of the source and
receivers in the rectangular space (length = 6800 mm, width =
6620 mm, height = 5100 mm); (c¢) Horizontal and (d) vertical
layouts of the source and receivers in the concave space (length =
6800 mm, width = 6620 mm, height = 3210 mm, radius = 3000
mm).

4 Results and discussion

The differences of the SPLs between 20 receiver points
were compared based on the range and variance, as shown
in Table 2. The range represents the difference between the
highest and lowest SPLs while the variance indicates the
fluctuations of the SPLs in the sound field. Table 2 shows
the uniformity of the sound field under excitation of the
“DNH-Tunnel-500” source.

It can be seen from Table 2 that the receivers located at
sites in front of the source have relatively higher SPLs,
regardless whether the enclosed space is rectangular or
concave. The range and variance of the SPLs are smaller for
the concave space compared with those for the rectangular
space for the frequency bands investigated in this work. The
range is larger at higher frequency bands. The sound energy
distribution is more homogeneous in the concave space
because of the chaotic behavior of the acoustic rays, which
is consistent with the theoretical results of ray chaos.
Because the ray system in the concave space has a positive
LLE, the ray separation is sensitive to the initial conditions
of the chaotic system. Therefore, the ray distribution has
better diffusion characteristics in a concave space.
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Table 2: Uniformity of the sound
“DNH-Tunnel-500" source.

field under excitation of the

1 kHz 2 kHz 4 kHz 8 kHz
Rectangle / Rectangle / Rectangle / Rectangle /

Concave Concave Concave Concave

1 108.6/108.5 102.8/103.4 88.3/89.2 76.3/77.1
2 108.7/109.2 103.1/104.4 88.8/90.4 76.8/78.5
3 109.2/108.6 103.9/103.7 89.9/89.7 78.0/77.7
4 108.9/109 4 103.8/104.4 89.9/90.2 77.9/78.1
5 109.3/109.7 104.1/104.5 89.9/90.2 77.8/78.0
6 111.1/109.8 106.5/104.4 92.4/89.9 80.2/77.7
7 108.5/109.3 102.6/104.5 88.1/90.4 76.0/78.3
8 108.6/109.5 103.1/104.8 88.8/90.8 76.8/78.6
9 108.7/109.4 103.4/104.7 89.4/90.6 77.4/78.5
10 108.7/109.1 103.6/104.2 89.6/90.2 77.6/78.1
11 109.2/109.2 104.2/103.9 90.1/89.6 78.0/77.5
12 110.3/109.6 105.7/104.3 91.6/89.9 79.4/77.8
13 108.6/109.6 103.3/104.5 89.2/90.3 77.1/78.2
14 109.0/109.9 103.7/104.9 89.6/90.8 77.5/78.7
15 108.8/109.9 103.6/104.9 89.6/90.8 71.5/78.6
16 109.5/109 .4 104.3/104.2 90.2/90.0 78.1/77.8
17 111.1/109.9 106.5/104.7 92.5/90.4 80.3/78.2
18 109.0/109.2 104.0/104.1 90.0/89.9 71.9/77.8
19 109.2/109.3 104.2/104.2 90.2/90.0 78.1/77.8
20 111.2/109.4 106.7/104.3 92.7/90.0 80.5/77.9

Range 2714 4.1/1.5 4.6/1.6 4.5/1.6
Variance  0.7862/0.1457 1.5110/0.1468 1.7267/0.1760 1.5783/0.172

For an enclosed space with homogeneous medium, the
ray motions are determined by the geometry of the space
and the characteristics of the sound field are determined by
the ray motions. In this work, the ray distribution is more
diffusive in a concave space compared to that in a three-
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dimensional rectangular space. In addition, the sound field
is more uniform in a concave space compared to that in a
rectangular space, as shown in Table 2.

In this study, the uniformity of the sound field is
focused on the audience area, which is typically the lower
and middle section of the room. Hence, it can be deduced
that chaos theory is more valid to describe the sound ray
mechanism. There are two types of mechanism for chaotic
systems [24]: (1) the Sinai billiards (dispersion mechanism),
where the dispersing boundary elements in the nearby
trajectories diverge upon scattering and the consecutive
collisions with the dispersing elements result in higher
divergence and (2) Bunimovich stadium billiards
(defocusing mechanism), where the nearby trajectories
converge after a collision with the focusing boundary
elements. The trajectories only begin to diverge after they
pass through the focusing point. Provided that the free flight
is sufficiently long (including reflections at the neutral
boundary elements), the focusing may be overcompensated
by divergence, which results in defocusing. It is worth
noting that a long free flight is required for weak focusing
before defocusing. The sound field is more uniform in a
concave space because of the defocusing effects. A positive
LLE indicates that separation of the acoustic rays is
sensitive to the initial conditions of the chaotic system,
which results in a higher uniformity of the sound field in the
enclosed space.

It is also evident that the difference in the uniformity of
the sound field is higher for intermediate and high frequency
bands, regardless whether the enclosed space is rectangular
or concave. This indicates that the method proposed in this
work is suitable to analyze geometrical acoustics. Ray chaos
theory provides a new perspective on the analysis of
geometrical acoustics. The sound energy density distribution
is more uniform if the acoustic rays exhibit chaotic
characteristics. In this study, simulations were performed for
different acoustic source (“Danley Sound Labs-SH-257)
with a different directivity. Similar results were obtained for
this case, as shown in the appendix.

5 Conclusions

In this study, the kinetic behaviors of ray systems in
rectangular and concave enclosed spaces were described
based on LLEs. A new concave geometry with chaotic ray
system was introduced by computing the LLEs of the ray
system. By converting the points on the ray trajectories into
a time series, the LLEs of the ray systems in three-
dimensional spaces were successfully determined without
the need for a kinetic equation. The Lyapunov exponent was
found to be positive for the concave space, which confirms
the chaotic behavior of the ray system in this geometry. A
ray system with a positive LLE indicates that the rays
behave in an ergodic manner whereas a ray system with an
LLE of 0 indicates that the ray motions are regular.
According to the ray chaos theory, the rays in a chaotic
system are sensitive to the initial conditions of room
acoustics, which makes it possible to obtain a uniform
sound energy density distribution as in the case of the
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concave space. Owing to the chaotic characteristics in the
concave space, there are less fluctuations of the SPLs in this
space compared with that in the rectangular space. The
results indicate that the method can be used to assess the
acoustic performance of a geometrical space with
homogeneous medium based on the dynamics of the
acoustic rays.

The method presented in this paper can be used for
preliminary architectural acoustic design, especially when
designing large auditoriums in which ray acoustics play a
dominant role. It is possible to obtain a diffuse sound field
by modifying a regular geometry into a chaotic geometry. In
room acoustics, designing a ray system with positive
Lyapunov exponents may be effective to realize a more
uniform sound field. This method is of practical significance
to designers in order to gain insight on the dynamics of
acoustic rays in enclosed spaces and optimize architectural
designs to obtain a satisfactory sound distribution.
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Appendix

Different speakers were used for the room acoustics
simulations in this study. The following results show the
fluctuations of the SPLs under the excitation of “Danley
Sound Labs-SH-25" directional source in the rectangular
and concave enclosed spaces with the same dimensions as
those used in the simulations based on the “DNH-Tunnel-
500” source. These supplementary results support the key
findings presented in this paper.

Re on-axis Back
(a) | kHz

Front

Re on-axs Back

Re on-axis Back
(c) 4 kHz (d) 8 kHZ

Figure 9: Directivity patterns of the “Danley Sound Labs SH25”
source at different frequencies.
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Table 3: Uniformity of the sound field under excitation of the
“Danley Sound Labs SH25” source.

1 kHz 2 kHz 4 kHz 8 kHz
Slope/Sinai Slope/Sinai Slope/Sinai Slope/Sinai
1 101/101.7 98/98.7 96.1/97.1 93.2/94.7
2 101.4/102.8 98.6/100.1 96.6/98.4 93.8/95.8
3 102.3/102.2 99.9/99.3 97.8/97.7 94.8/95.3
4 102.2/102.8 99.7/99.5 97.8/98.3 94.9/96.1
5 102.6/102.9 99.4/99.5 98.0/98.3 95.7/96.1
6 105.1/102.7 101.3/99.1 100.7/98 99.0/95.9
7 100.8/103.0 97.7/99.6 95.9/98.6 93.2/96.5
8 101.3/103.3 98.5/100.0 96.6/98.9 93.8/96.9
9 101.8/103.2 99.2/99.9 97.2/98.8 94.4/96.8
10 102.0/102.8 99.4/99.6 97.5/98.3 94.7/96.1
11 102.7/102.4 99.6/99.0 98.2/97.7 95.9/95.5
12 104.3/102.7 100.7/99.2 99.9/98.0 98.0/95.9
13 101.7/103.0 98.9/99.7 97.1/98.5 94.4/96.3
14 102.1/103.3 99.3/100.2 97.5/98.9 94.8/96.6
15 102.0/103.4 99.3/100.1 97.5/98.9 94.8/96.7
16 102.8/102.7 99.7/99.2 98.3/98.1 96.0/96.0
17 105.1/103.2 101.4/99.6 100.8/98.6 99.0/96.6
18 102.4/102.6 99.6/99.2 98.0/98.0 95.4/95.9
19 102.7/102.7 99.8/99.2 98.2/98.1 95.8/96.0
20 105.3/102.7 101.7/99.3 101/98.2 99.2/96.1
Range 4.511.7 4/1.5 5.1/1.8 6/2.2
Variance 1.8090/0.1626 1.1150/0.1674 2.2161/0.2138 3'484;%/0'28
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