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1 Introduction 

The boom produced by supersonic aircraft has prevented the 

introduction of new fast civilian air transports for the last 50 

years. Proposed regulations would allow sonic booms of up 

to 75 dB of perceived noise level [1], which is very much less 

than the 110 dB sound signature of the Concorde, and which 

it is hoped will be acceptable to regulators and to the general 

public. Factors that affect the boom pressure and the sound 

levels perceived on the ground include aircraft weight and 

altitude, atmospheric conditions, and the aircraft shape and 

lift distribution. This study discusses the factors which can 

reduce the sound produced by a supersonic aircraft to an 

acceptable level. 

 

2 Method 

The code developed for this project predicts the sound 

pressure level which would be measured on the ground. The 

first step is to calculate the pressure signature in the vicinity 

of the aircraft, which is the near field sound level. Then, this 

signature is propagated through the atmosphere, taking into 

account the changes due to both the shaping of the shock 

wave and the attenuation of the atmosphere, to get the 

pressure on the ground. Finally, this pressure is converted to 

a perceived noise level (PLdB) to determine the effect on the 

observer. The maximum sound pressure is assumed to be 

directly underneath along the ground track, so this is what is 

calculated. The effect in the off track locations is assumed to 

be less. 

 

2.1 Slender body in supersonic flight 

A supersonic aircraft was first modelled as a slender cylinder 

in a uniform flow by Whitham,[2] which is a reasonable 

approximation to the long slender shapes actually used in 

high speed aircraft. The aeroacoustic pressure disturbance 𝛥𝑝 

at any position 𝑥 and radius 𝑟 from the aircraft is given by 
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where 𝑀 is the Mach number, 𝛽 = ඥ(𝑀2 − 1), 𝛾 is the ratio 

of specific heats for air, and 𝐹(𝑥) is the Whitham “F Function 
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where 𝑆 is the aircraft cross sectional area at station 𝑥, as 

determined by the aircraft geometry. Note that the F function 

depends only on variations of the body cross section area with 

length and represents the acoustic source signature. The 

pressure disturbance is a strong function of Mach number, but 

it decreases with distance only as 1/ඥ(𝑟), so it does not drop 

off very quickly.  

The area function 𝑆(𝑥) represents the volume of air 

“pushed aside” and can be calculated for any reasonably 

slender shape. This produces a pressure function 𝑃(𝑥, 𝑟) at a 

distance 𝑟 from the body, which propagates outward at the 

speed of sound. However, the local speed of sound will varies 

with pressure, so the 𝑥 position of each point on the function 

will be changed to 
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(3) 

The modified function may be multivalued - that is, 

different pressures may be moved to the same position. This 

is the characteristic of a shock wave. The sound calculation 

code collects these different values and assigns a unique 

pressure to each point. This pressure becomes discontinuous, 

and forms the shock waves which are characteristic of the 

aircraft noise signature. 

  

2.2 Aircraft Weight 

Air is pushed out of the way by the aircraft’s volume as it 

passes, and is also pushed downward to create lift. This 

produces an additional shock in the downward direction 

which adds to the sound underneath the aircraft. Harris [3] 

modifies the shape function 𝑆(𝑥, 𝜃) to be the sum of the cross 

sectional area 𝐴(𝑥) and a lift term 𝑙(𝑥, 𝜃) such that 
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where q is the dynamic pressure at aircraft speed 𝑈 and 

atmospheric pressure 𝜌 . The lift term reduces the area above 

the aircraft for positive 𝜃 and increases it beneath the aircraft. 

The lift distribution is a function of the aircraft geometry but 

the total lift in level flight must equal the weight. The lift term 

varies as 1/𝜌 and so increases with altitude. The volume 

term does not, so the lift effect becomes dominant at high 

altitudes. The lift term also varies as 1/𝑈2, which counters 

the increase in sound due higher Mach numbers and makes 

the total sound almost insensitive to speed. The area function 

is also modified by the presence of engine inlets, since the 

amount of air pushed aside is reduced by what is taken in. 

This volume is added back at the exhaust. The theoretical 

maximum inlet area is in the Busemann biplane 

configuration, where all of the volume is taken in, and the 

shock effect is theoretically zero. 

For a given aircraft shape and weight, the 𝑆 function and 

the total sound intensity can be calculated at a given Mach 

number and altitude. Using the example of Airplane B in 
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Maglieri [4] where the weight is 15,500 kg and the maximum 

area is 4 𝑚2 the 𝑆 function is shown with separate weight and 

volume contributions in figure [1]. 

 

 
Figure 1: Contribution of volume and weight to total effective area 

for F-105 aircraft. 

2.3 Sound Prediction 

The above calculations give the sound signature in terms of a 

pressure profile, with sharp steps in pressure due to shock 

waves. The more useful result is the response of humans to 

these shocks, or the perceived sound volume, as determined 

by the frequency response of the human ear. The pressure was 

converted to a perceived sound level on the Stevens Mark VII 

scale, using the technique of Shepherd [5]. 

 

2.4 Aircraft Summaries 

For conventional supersonic aircraft, the sound levels are 

calculated for a variety of weights and altitudes in figure 2 

Weights over 100 tonnes are based on a Concorde shaped 

airframe, and lower weights are based on the F-105 shape as 

used in figure 2 Only the very lightest aircraft produce 

acceptable noise at 16 km altitude, and the heavier aircraft 

can only operate at 20 km, which is far above the maximum 

altitude normally used for civilian aircraft.  

 

 
Figure 2: Conventional aircraft noise at Mach 2. Stars are values 

below the limit of 75 PLdB. 

 
Figure 3: Theoretical volume cancelled aircraft noise at Mach 2. 

To calculate the amount of sound reduction theoretically 

possible, the calculations were rerun without the aircraft 

volume term by using an engine inlet the size of the aircraft 

frontal area. The lift distribution has also been modified to be 

the entire length of the aircraft. Figure 3 shows that the 

acceptable weights and altitudes are slightly less restrictive, 

but are not dramatically better. 

 

3 Conclusions 

Using conventional technology, a supersonic aircraft flying 

at 2 at 16 km (50,000 feet) will have to weigh less than 40 

tonnes, less than a small airliner like the A220 to meets the 

proposed noise standards, and one like the Concorde, with a 

maximum weight of 180 tonnes would have to climb to 20 

km (66,000 feet) before going supersonic. A hypothetical 

aircraft with distributed lift and a volume-cancelling shape 

should be able to fly at Mach 2 at about 2 km lower. 
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