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1 Introduction
Sung speech shows significant acoustic differences from spo-
ken speech. One challenge in analyzing both spoken and sung
speech is identifying the individual speech sounds. Forced-
alignment systems such as P2FA [1] and the Montreal Forced
Aligner [2] have been designed to accomplish this task for
spoken speech, however, there is no such tool for sung speech.
Previous work used a combination of hidden Markov models
and convolutional neural networks on log-Mel filterbanks to
segment phones in sung Mandarin opera [3]. We, in turn,
trained a deep neural network to extract phone-level infor-
mation from a sung acoustic signal. The primary objective
was to create a model that can take a WAV file containing a
target song as the input, and produce time-aligned phonemic
labels automatically as output. To measure the performance
of our model on these tasks, we primarily measured accuracy
on identifying the correct phone label at a given time-step.
We also compared the accuracy of our model to other state
of the art systems, trained on spoken speech, performing the
same task with sung speech.

2 Method
We used a selection of traditional Canadian folk songs from
the Moses and Frances Asch Collection [4] to train our model.
We selected songs from the collection that had either no or
minimal accompaniment. There were two unique singers in
the data set, one male [5] and one female [6].

2.1 Building and Training the Model
Time-aligned labels for the data were created by manually
transcribing the songs using a Praat TextGrid [7]. Approx-
imately 30 minutes worth of songs were transcribed in to-
tal. Twenty-five (25) millisecond windows of audio spaced
10 milliseconds apart were then extracted from the record-
ings. The label for which phone class the window belonged
to was determined based on the time-aligned transcription.
To increase the amount of data a second copy of each win-
dow was created by adding Gaussian noise to the audio and
then extracting the windows and labels again. We also used
the TIMIT [8] spoken speech data set.

Using the Keras deep learning library with the Tensor-
flow backend, we built several models to train on our data.
Our most successful model had an architecture comprised
of two convolutional layers, four bidirectional LSTM layers,
and a time-distributed result layer. The first convolutional
layer has a filter size of 4 and 512 filters with a stride length
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of 1. The second convolutional layer has 256 filters and a fil-
ter size of 4 with a stride length of 1 and a dilation rate of
2. Both convolutional layers used Keras’s “causal” padding
option. The convolutional layers are both immediately fol-
lowed by a spatialized dropout layer at a rate of 30% and a
batch normalization layer with default parameters. The first,
second and fourth Bidirectional LSTM layers had a size of
256, while the third had a size of 512. Default batch normal-
ization was again used and the LSTM layers all had Gaussian
dropout at a rate of 60%. All other parameters were left at
their default values.

The model was trained with categorical cross-entropy
loss. Its framewise phone recognition accuracy was moni-
tored during training to identify the best performing model.
The Adam optimizer was used, with the default configura-
tion. This model was trained first for 10 epochs on our singing
dataset, then for 10 epochs on the TIMIT corpus of spoken
speech, and then was trained again on our singing dataset for
another 10 epochs. The batch size for each of these training
routines was 1. By training on TIMIT, the model was exposed
to a far greater amount of data than it would otherwise have
seen, and because the TIMIT data is formatted in the same
way as the singing data, the model is more robust as a result.

3 Results

Table 1: Accuracy of Different Model Architectures

Model Architecture Highest Accuracy
Convoluional 18 %

Convolutional + LSTM 53 %
Convolutional + Bidirectional LSTM 81 %

Our best performing model achieved training accuracies
of approximately 80 percent (see Table 1). However, ulti-
mately the output that we want to achieve is not a list of the
most probable phone every 10ms; rather, we want to know
where the boundaries fall between each phone. To do so, we
use the decoding algorithm specified by Kelley & Tucker [9],
but using standard backtracking instead of the argmax rou-
tine, to produce time stamps for the boundaries of each phone.
Of course, if the model had correctly labeled every phone
with 100% confidence at each time-step, this task would be
trivial, which is why we used accuracy as a training and eval-
uation metric.

Figure 1 presents a sample alignment of a short segment
of a song. Analysis of the quality of the automatic transcrip-
tions overall is more difficult, but as demonstrated in Figure
1, vowels are segmented acceptably well, and certain other
segments are also consistent, such as the burst releases of /t/
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and /d/ and sonorants like /ô/. In fact, the model tends to over-
estimate its confidence in these segments and compress all of
the phones that it is not as confident about into a tiny margin
in between the ones that it is more confident in. This is an un-
desirable behaviour, but we encountered this same tendency,
to minimize certain phones in models used on this task, for
regular speech. Beyond this problem, the model does place
certain boundaries in nearly the same position as the hand-
alignment, which is encouraging, as placing boundaries with
high accuracy is necessary for the model to be useful in au-
tomating the alignment task.

Figure 1: Sample alignment of a section of a song. From top to
bottom: Waveform, spectrogram, target transcription, model tran-
scription.

4 Discussion
One important question that arises from our results is why,
despite achieving good frame-wise accuracy rates in the train-
ing set, the alignments produced by the model are so bad in
certain places. Manual inspection of the alignment suggests
that the model seems to almost ignore certain phones entirely,
which is most likely due to it not having as much confidence
in being able to identify those phones correctly when com-
pared to sonorants and bust releases. If its confidence is
spread between many classes, it will have a hard time decid-
ing which one it should select, and may ignore those lower
probability phones in favour of items on which the model
reaches a much higher level of confidence. For this reason
it may be very useful for us to look at the way that we trans-
late the labels outputted by the model into a Praat TextGrid, as
there might be a way to do this that takes into consideration
the fact that some classes of phone will have overall lower
levels of probability than others due to them appearing more
similar to other options. Minimum and maximum duration
constraints, for example, on the alignment algorithm should
help ameliorate this behavior.

Future work should focus on determining why the model
is making classification mistakes. A confusion matrix or in-
verse layer maximization may help indicate what kinds of
mistakes the network is making.

5 Conclusion
In this project, we achieved our main initial goals of creat-
ing a model that is able to classify phones when presented

with singing as well as produce a time-aligned Praat TextGrid
that can be compared to the original audio track. Some of
our other goals, such as using various audio pre-processing
methods to compare their effectiveness, we did not achieve.
Despite the difficulty in creating from scratch a dataset that
would be sufficiently large to adequately train a model for this
challenging task, we were able to create a model that is able
to classify phones with some degree of accuracy. Excitingly,
this suggests to us that this task, although more difficult than
the same task performed on regular speech, can be handled in
a similar way and with similar levels of success.

Ultimately, we hope to improve the model and the au-
tomatic phone alignment further, until it can be packaged as
a bespoke application for use in research. We also plan to
explore the many questions about how our model can clas-
sify sung phonemes, and what differences and similarities it
might have with humans, as we continue to test and improve
upon it.
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