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Résumé 
Cet article présente une revue des recherches sur la classification des instruments de musique qui ont utilisé le système d'ap-
prentissage automatique. Les deux principales étapes de la tâche de classification automatique sont discutées, l'extraction des 
caractéristiques et la classification. La classification des instruments de musique suit le système Hornbostel-Sachs. Dans l'ex-
traction de caractéristiques, les caractéristiques pertinentes couramment utilisées dans la littérature sont répertoriées et organi-
sées dans une taxonomie qui est divisée en fonction du domaine de calcul. Différentes techniques de classification largement 
utilisées par les chercheurs sont également présentées et passées en revue. 
 
Mots clefs : classification des instruments de musique, apprentissage automatique, extraction de caractéristiques, classification 
automatique 
 

Abstract 
This paper presents a review of research on musical instrument classification which employed the machine learning system. 
The two main steps in the automatic classification task are discussed: feature extraction and classification. The musical instru-
ment classification follows the Hornbostel-Sachs system. In the feature extraction, the relevant features that are commonly used 
in the literature are listed and organized in a taxonomy which is divided according to the domain of computation. Different 
classification techniques that are widely used by the researchers are also presented and reviewed. 
 
Keywords: musical instrument classification, machine learning, feature extraction, automatic classification. 
 
 
1 Introduction 
Two of the various approaches often used in the studies on 
musical instruments are the acoustical characterization and 
sound recognition system. Scientists since many years ago 
started to discover the acoustical characteristics of different 
types of musical instruments by using various techniques. 
The initial techniques used are modal analysis and acoustic 
radiation. Over the years, there are many other new parame-
ters developed and introduced from these fundamental tech-
niques. The common acoustical characterization parameters 
are mechanical admittance and impedance, sound radiation 
coefficient, the intensity of the acoustic radiation, anti-vibra-
tional, and transmission parameter to name a few.  

Mechanical admittance is defined as the ratio of the ve-
locity, v to the force, F. This characteristic is useful in under-
standing the body vibration of the musical instrument. The 
study which used admittance on musical instrument vibration 
measurements can refer. Reciprocal to the admittance, driv-
ing point mechanical impedance on the other hand is defined 
as the ratio of the applied force, F to the velocity, v produced 
by the instrument body. Measurement is done by applying the 

force to the instrument body and the resulting velocity is 
measured with the accelerometer [1]. 

Sound radiation characteristics of different musical in-
struments have been extensively studied as well. Sound radi-
ation coefficient which is defined as the ratio of the material’s 
speed of sound, c to its density, ρ describes how much the 
sound radiation of the musical instrument body is damped. It 
can be measured by the vibrational response of the instrument 
soundboard for a given force [1]. 

The intensity of the Acoustic Radiation (IAR) parameter 
is introduced by Tronchin in 2005 on the kettledrums. It is 
defined as the product between the space-averaged amplitude 
of the cross-spectrum sound pressure, p, and the velocity, v 
generated from the surface vibration. As the name suggests, 
it is a parameter related to acoustic intensity and acoustic ra-
diation [2].  

Studies were also carried out in determining the sound 
characteristics of the woods used in musical instruments. 
Various woods are tested, analyzed based on the anti-vibra-
tion and transmission parameters. The anti-vibration param-
eter is the reciprocal of the sound radiation ratio produced by 
the woods. It is the ratio of the longitudinal wave speed, c to 
the density, ρ of the wood. On the other hand, the transmis-
sion parameter is the product of the longitudinal wave speed, 
c, and the quality factor, Q. The results are then used in the 
acoustical classification and comparison of the woods used in 
a different category of musical instruments [3].  
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On the other hand, sound recognition systems started to 
get more attention due to the growth of digital music. Music 
information retrieval (MIR) which is the subset of the broader  

field of sound recognition, is known to be the field that 
contributes to the solutions of the musically related task. 
Sound recognition is a multi-disciplinary field that includes 
speech recognition, information retrieval, music information 
retrieval, environmental sound retrieval, etc. Figure 1 below 
illustrates the general taxonomy of the sound classification 
scheme introduced by [4]. Under the field of MIR, there are 
various tasks. For instance, music genre recognition, song 
identification, mood classification, music annotation, tempo, 
fingerprinting, etc. One of the tasks is on musical instrument 
classification. 

 

 
Figure 1: Taxonomy of sound [4]. 

The application of MIR in the musical instrument classi-
fication can help in the identification of the individual musi-
cal instrument, its type, and family. It is gaining popularity 
among researchers, musicians, and acousticians in the efforts 
of getting a better understanding of the sound produced by 
musical instruments. As we are currently living in the digital 
world, where vast amounts of musical databases are made 
available online. The demands are there for the development 
of computational tools for the analysis, summarization, clas-
sification, and indexing of those musical data [5]. These de-
mands have inspired a growing research attempt in automatic 
classification of the sound produced by the different types of 
musical instruments.  

This paper aims to review a variety of research efforts on 
musical instrument classification. Because of the wide vari-
ety of applications of music information retrieval as men-
tioned above, it is difficult to include all relevant works. This 
paper will only focus on the research and studies done on mu-
sical instrument classification. The rest of the paper is orga-
nized as follows. Section 2 discussed the musical instrument 
families and classification followed by sound recognition in 
Section 3. Section 4 and 5 present the features extraction and 
classification techniques, respectively. The conclusion is 
covered in Section 6. 
 
 
 
 

2 Musical Instrument Classification 
The globally used musical instrument classification was de-
veloped by Curt Sachs and Erich Moritz von Hornbostel in 
1914. It is called the Hornbostel-Sachs system (or H-S Sys-
tem). Curt Sachs was a German musicologist and expert on 
the history of musical instruments. Erich Moritz von Horn-
bostel was an Austrian musicologist and expert on the history 
of non-European music [6]. Generally, the H-S system has 
five top-level classifications, which are shown in Figure 2 be-
low. Initially, there were only four major classes excluding 
the electrophone. Electrophone class was introduced and 
added into the system by [7]. The system is then updated in 
2011 by the Musical Instrument Museums Online (MIMO) 
project which aimed to create “a single access point to digital 
content and information on the collections of musical instru-
ments held in a consortium of European museums”. The sys-
tem consists of several levels below those five major levels 
which are not shown in Figure 2. A complete list of musical 
instruments classification which is listed in decimal notation 
can refer to [8]. 
 

 
Figure 2: Hornbostel-Sachs musical instrument classification sys-
tem. 

The five top classes in the H-S system are idiophones, 
membranophones, chordophones, aerophones, and electro-
phones. They were divided by the primary source of sound 
from the musical instruments. For idiophones, the sound vi-
bration is coming from the substance of the instrument itself, 
without requiring stretched membranes or strings. The sound 
from membranophones instruments is excited by tightly 
stretched membranes while chordophones instruments are by 
stretched string between fixed points. As for aerophones, the 
vibration is mainly from the air itself. Lastly, electrophones 
are instruments that use materials generating acoustic sound 
signals, electronically stored data, or electronic circuitry to 
generate electrical signals that are then transferred to a loud-
speaker to produce sound [8]. 

Hornbostel-Sachs classification system is one of the var-
ious systems that have been used throughout history. Several 
other systems are also widely used. The western classification 
system is used in the west, dividing instruments into the 
woodwind family, string family, brass family, and percussion 
family. The Chinese classification system which is histori-
cally proven to be the oldest classifying scheme dates from 
the third millennium BC. The Chinese classification system 
groups the instruments according to the materials that are 
made of. For example, stone, wood, silk, and bamboo [9]. 
However, these classifying systems are not perfect in classi-
fying all musical instruments. Certain musical instruments 
can be classified in more than one family. For instance, a pi-
ano that has strings, but is struck by hammers. So, it could be 
classified as a string instrument or percussion instrument 



 

according to the western system. The application of any clas-
sifying system is dependent on the researcher or musician and 
their focus or scope of research. 

 
3 Sound Recognition System  
As mentioned earlier in section 1, MIR is a subtask of the 
audio recognition system. The task is dealing with the auto-
matic audio recognition of music signals which at the end will 
extract the information or characteristics of the music con-
tent. Musical instrument class is one of the characteristics that 
could be obtained by the analysis. The application of an audio 
recognition system in musical instrument classification is not 
a new thing as there are numerous attempts done by the re-
searcher on it in recent years. Most of the research done in 
musical instrument classification have adopted the technique 
used in speech recognition and speaker identification system. 
This is because a few features from the speech recognition 
system can be directly applied to solve the musical instrument 
classification problem [10].  

Generally, the musical instrument classification system 
consists of three steps, preprocessing, feature extraction, and 
classification as shown in Figure 3. Most of the research on 
musical instrument classification emphasized feature extrac-
tion which is vital in getting the correct characteristics of the 
sound processed. 

 

 

Figure 3: Process of audio recognition system in musical instru-
ment classification. 

In the first step, the audio input that is captured by the 
microphone will go through a windowing process by seg-
menting the audio into shorter signal chunks. A musical audio 
signal is usually long and may contain a large number of sam-
ples given that the sampling rate is higher than 10 kHz. The 
audio sample is, therefore, couldn’t be analyzed directly and 
need to go through the pre-processing step. This is because 
the audio signal is constantly changing. To simplify it, the 
audio signal is split into a continuous sequence of finite 
frames of samples. The frames with short scales are then as-
sumed to be not changing much. This process converts the 
non-stationary audio signal into a stationary signal over a 
short period [11]. Typically, the segmented frame length is in 
between 10 to 50 milliseconds and will be overlapping with 
the adjacent frames for about 25 to 50% [5, 12]. This is to 
ensure that there are no missing signals during the segmenta-
tion process. The frame size, however, is related to the length 
of the processed sound signal [13]. 

In the pre-processing step, some research will remove the 
noise or silence part of the audio input before proceeding to 
the next step [14]. It can help in reducing the computational 
complexity of the recognition system. For instance, zero-
crossing rate (ZCR) or the energy threshold value is used in 
the research done to eliminate the unwanted silence part of 
the audio signal. Other than that, they also applied the pre-
emphasis which serves the purpose of compensating the 

suppressed high-frequency formants during sound produc-
tion by the musical instruments [5].  

The next step of sound recognition is the feature extrac-
tion of the audio signal. To classify the audio input into any 
musical instrument class, it is very crucial to identify the 
characteristics of the sound produced by each musical instru-
ment. This process is also called parameterization that even-
tually will build the feature vectors that best represent the mu-
sical sound. The built feature vectors contain the most signif-
icant characteristics or parameters of the musical sound. This 
will then be very useful in the classification process. There 
are various methods to extract the characteristics or features 
from the audio inputs, which will be discussed in detail in 
section 4.  

The significant parameters of the musical instruments’ 
sound constructed in the feature extraction will be used as a 
descriptor to represent a similar type of musical instrument or 
to distinguish between different types of musical instruments. 
This could be done through the classification process based 
on various techniques or machine learning algorithms called 
the classifier. There are many classifiers available currently 
but the choice of the suitable one depends on the goal of the 
classification system, the accuracy of the classifier, and 
avoiding overfitting. In general, the classification algorithm 
consists of two phases: the training phase and the testing 
phase. In the training phase, the machine learning algorithm 
under supervised conditions will build representative acous-
tic models that best represent the sound class that the system 
wants to recognize. This is done by taking multiple sound 
samples of the same musical instrument if the musical instru-
ment type is the goal of the machine learning system. After 
the algorithm is trained, it will then be tested in the testing 
phase. The unknown sound samples will be imported into the 
system for classification. The algorithm will classify the in-
coming sound signal into different classes based on the infor-
mation acquired in the previous phase [13].  

The effectiveness of the sound classification system is 
the main concern of the researcher. It is measured by compar-
ing the accuracy of different features or classifiers used in the 
sound classification system. Until today, researchers are still 
trying to get the best feature set or classifier that could be used 
in musical instrument classification. Since 2014, there is an 
annual competition organized by the MIR community called 
Music Information Retrieval Evaluation eXchange 
(MIREX). This event lets the participant test their music clas-
sification system in a few categories such as genre, musical 
instrument, music, mood, and artist classification [11]. Other 
than that, the MIR community is organizing the meeting 
through the International Society of Music Information Re-
trieval Conference (ISMIR) every year since 2014. 

 
4 Feature Extraction 
Feature extraction and classifier are important components of 
the classification system. Feature extraction determines the 
features to be used for the machine learning system. The 
problems of classifying the sound samples into different clas-
ses based on feature vectors will be addressed. The feature 
vectors represent the similarities between the sound samples. 



 

The features extracted may be redundant and irrelevant. This 
will cause a burden for the computation time. Therefore, 
some of the features will be discarded and only a subset of 
the features will be used at the end. This process is called fea-
ture selection. Both feature extraction and feature selection 
are very crucial in machine learning. It can ease the compu-
tation time by selecting only the useful and relevant features 
particularly when the dataset is too large [15].  

There are several approaches to categorize the features 
extraction of the audio signal in the machine learning system. 
Due to the manifold nature of audio features, there is no gen-
eral taxonomy that could be applied to all fields of research. 
Hence, it is usually designed according to the research field 
and purpose of the study. Fu et al. [11] unified the taxonomies 
of audio features by [16] into a single hierarchical taxonomy. 
The taxonomy consists of low-level features and mid-level 
features with the top-level providing the information on the 
human’s perception towards music through the semantic la-
bels. The low-level features in this taxonomy are divided into 
timbre and temporal features. As for the mid-level features, it 
contains information on rhythm, pitch, and harmony. The tax-
onomy is grouped into short-term and long-term features.  

Alias et al. [13] extended the taxonomy introduced by 
[17] in their review on feature extraction techniques on 
speech, music, and environmentally sound. The taxonomy is 
classified into physically based and perceptually based ap-
proaches. These two approaches are then further divided into 
different parameterization domains such as time, frequency, 
wavelet, image, cepstral, etc. This is different from the tax-
onomy by [17] which listed the parameterization domain on 
the first level of taxonomy and the physically-based and per-
ceptually based features are put under the frequency domain.  

In this paper, taxonomy in Figure 4 will be adopted and 
the features extraction techniques in the literature for the clas-
sification of musical instruments will be reviewed. It is noted 
that some of the domains may not be relevant in the review 
of the musical instrument classification therefore it will not 
be covered in this paper. Only the relevant domain such as 
time, frequency, cepstral, wavelet domain is covered. The 
mathematical analysis in detail is beyond the objectives of 
this study and will not be covered in this paper. 
 
4.1 Time Domain 
Also called a temporal domain, the time domain is perhaps 
the most basic domain for audio signals. It is not complex and 
easy to extract audio features from. It can be displayed di-
rectly from the raw audio signal without further transfor-
mation. There are four classes of physical time-domain audio 
features: zero crossing-based, amplitude-based, power-
based, and rhythm-based features. 
 
4.1.1 Zero-Crossing Rate-Based Features 
The technique used here is based on the analysis of the rate 
of change of the sound signal. It is a simple but effective 
method commonly used in MIR. 

 

 
Figure 4: Taxonomy of audio features in musical instrument clas-
sification. 

Zero-Crossing Rate (ZCR): Known to be one of the easiest 
features to get from the audio signal. The zero-crossing rate 
is defined as the number of times the audio signal waveform 
passed the zero-amplitude level within one second. This fea-
ture is widely used in audio classification and machine learn-
ing systems. It is measured based on the rate of change of the 
audio signal and is probably the simplest way for feature ex-
traction. Kedem [18] and El-Maleh et al. [19] mentioned in 
their papers that the ZCR can provide a rough estimation of 
the dominant frequency and the spectral centroid in the sig-
nal. ZCR is quite popular in the musical instrument classifi-
cation field. 
 
4.1.2 Power-Based Features 

Power-based features are extracted based on the audio signal 
power. Few relevant features are described below.  
 
Energy: Using the frame-based procedure, the energy feature 
summarizes the energy distribution of each frame over time. 
Mitrovic et al. used the term short-time energy to represent 
this feature [17]. The researchers used this feature for finding 
the energy distribution in each frame and tried to find the dif-
ferences between the instruments. Bhalke et al. [5] used time-
domain energy as the feature in their musical instrument 
recognition paper. 
 
Temporal Centroid: Temporal centroid gives the time aver-
age over the signal envelope in seconds. It represents the in-
stant moment in time that containing the largest average en-
ergy of the signal. The temporal centroid has been used as a 
time-domain audio feature. It may also be classified as a 
MPEG-7 feature in the musical instrument classification field 
[12]. 
 
Log Attack Time (LAT): The log attack time characterizes 
the attack of the sound signal. Musical instruments can pro-
duce either instant or smooth transitions of musical sounds. It 



 

is computed as the logarithm of the time taken from the start 
to the first significant local peak [12]. 
 
Root Mean Square (RMS): Also named as the volume is the 
review by [17], RMS is computed by finding the root mean 
square of the waveform magnitude within the frame [20]. 
 
4.1.3 Rhythm-Based Features 

Rhythm is a relevant characteristic of musical sound that 
characterizes the sonic events’ structural organization [13]. 
Feature derived under this taxonomy is discussed here. 
 
Periodicity: Periodicity or tempo is the measure of the rhyth-
mic strength or repetitive structures of audio signals [21]. Pe-
riodicity is obtained by applying the autocorrelation function 
to acquire the mean value of the maximum peaks through all 
the signal frames. 
 
4.1.4 Spectrum Shape-Related Features 

The spectrum shape of the audio signal is another relevant 
feature that could be employed in the task of musical instru-
ment classification. Spectrum shape-related features are de-
scribed in the following paragraphs. 
 
Attack, Decay, Sustain, and Release (ADSR) Envelope: 
The temporal envelope of musical instrument sounds are 
characterized by attack time, decay time, sustain time, and 
release time as shown in Figure 5. Attack time is the time 
taken for the sound signal to rise from zero to the peak. The 
decay time is the subsequent time to run down the signal level 
from peak to the sustained level. Sustain time is the main se-
quence where the signal level remained the same and lastly, 
the release time represents the time taken for the signal to de-
cay back to the zero levels. ADSR combined up to form a 
signal envelope that could be extracted as a feature in vector 
form in the musical instrument classification task [5]. 
 

 
Figure 5: The ADSR envelope 

Amplitude Modulation (AM): Amplitude modulation (AM) 
features are extracted from the audio signal for the peaks 
which corresponds to the frequency of amplitude modulation. 
AM has measured over two spectral ranges 4 to 10 Hz and 10 
to 40 Hz [22]. 
 
Autocorrelation Coefficients (AC): Autocorrelation coeffi-
cients (AC) represent the overall shift of the spectrum [23]. 

Brown reported that AC is useful in musical instrument iden-
tifications [24]. 
 
Temporal Kurtosis: Temporal kurtosis shows the spikiness 
of the audio envelope. It is used in measuring the variation of 
the transients of the audio signal over successive frames [25]. 
 
4.2 Physical Frequency Domain 
The frequency domain is also named the spectral domain. Ac-
cording to [17], audio features on the spectral domain form 
the largest set of audio features. They are acquired from au-
toregression analysis or Short-Time Fourier Transform 
(STFT). This paper employed the approach by [17] in further 
dividing the frequency domain into two subsets: physical fea-
tures and perceptual features. In this section, features ex-
tracted in the physical frequency domain for the musical in-
strument classification task will be discussed first.  
  
4.2.1 Autoregression-based 

Autoregression-based features use linear prediction analysis 
on signal processing. The linear predictor captures the spec-
tral predominance of audio signals [13]. Commonly used 
autoregression-based features are discussed below. 
 
Linear Prediction Coefficients (LPC): Linear prediction 
coefficients capture the spectral envelope of the audio signal, 
such as formant frequencies that could be found in the vocal 
tract. It has been used extensively in speech recognition ap-
plications. The application of LPC in musical instrument 
classification could be found in the works by [14]. The pre-
diction model used is shown in Figure 6. It consists of the 
input u(n) which is the periodical sound produced by the mu-
sical instrument, H(z) which represents the musical instru-
ment system and the output o(n) represents the music. 
 

 
Figure 6: Linear prediction model for musical instrument sound 
production [14]. 

Line Spectral Frequencies (LSF): Line Spectral Frequen-
cies are also called Line Spectral Pairs (LSP). It is obtained 
by finding the root phases of the two polynomials that are 
decomposed from the LPC [26]. LSF is proved to be more 
robust when compared to LPC as they provide statistical 
properties. 
 
4.2.2 Short-Time Fourier Transform-Based Fre-
quency Features  

Short-Time Fourier Transform or STFT-based audio features 
are obtained from the signal spectrogram that is employed by 
STFT computation. According to [17], there are two ways to 
yielding the STFT features, either from the spectrogram en-
velope or from the STFT phase. The application of STFT-
based features in musical instrument classification is found to 
be mostly, if not all, from the spectrogram envelope. These 



 

features are widely employed by researchers and are dis-
cussed below. 
 
Spectral Flux: Spectral flux (SF) is defined as the 2-norm of 
the frame to frame spectral amplitude difference vector by 
[27]. SF measures the changes in the spectrum shape over 
time. Signals without much variation like noise will show low 
SF, while the high SF indicates sudden changes that are use-
ful in detecting certain information like the onset of sound. 
 
Spectral Peaks: As defined by [28], spectral peaks are the 
constellation maps that display the most significant local 
peaks in the time-frequency signal distortions. The advantage 
of this feature is that it is highly robust to noise since the sig-
nificant peak frequencies are usually free from noise disturb-
ance. This feature is used by [28] in the Shazam search en-
gine. 
 
Audio Spectrum Envelope: Audio spectrum envelope 
(ASE) is defined as the log-spectrum frequency power spec-
trum that produced a reduced spectrogram of the original au-
dio signal. ASE consists of coefficients that describe the 
power spectrum density within a series of frequency bands. 
Categorized as a MPEG-7-based low-level descriptor, it is 
suitable for automatic musical sound recognition [29]. 
 
4.3 Perceptual Frequency Domain 
Another division of frequency-based features is the percep-
tual domain. Perceptual features have a semantic meaning as 
the human auditory perception. In this section, several per-
ceptual features will be included and discussed.  
  
4.3.1 Brightness-Related Perceptual Frequency Fea-
tures 

The brightness of an audio signal characterizes the frequency 
spectrum distribution. An audio signal is considered bright 
when it is dominated by high frequencies. Brightness is also 
defined as the balancing point of the signal energy [27]. 
 
Spectral Centroid: Spectral centroid (SC) is one of the com-
monly used features. It describes the center of the gravity 
(centroid) of the spectral energy. It can also be defined as the 
first moment which is the frequency position of the mean 
value of the spectrum [30]. Deng et al. in their work on mu-
sical instrument classification defined that the SC measures 
the average frequency weighted by the sum of spectrum am-
plitude within each frame [12]. 
 
Sharpness: Even though it is often treated to be similar to the 
spectral centroid, sharpness is computed based on the specific 
loudness instead of the spectrum magnitude. The sharpness 
of a sound increases as the strength of the high frequencies of 
the spectrum increases [31]. 
 
 
 
 

4.3.2 Spectrum Shape-Related Perceptual Frequency 
Features 

Spectrum shape is considered one of the popular and widely 
used approaches in MIR. The relevant set of spectrum-shape-
related features are listed below. 
 
Bandwidth: Bandwidth is also called a centroid width. It 
shows the weighted average of the deviations between the 
spectral components with the spectral centroid [32]. It is the 
second-order statistic of the spectrum which could distin-
guish the tonal sounds and noise-like sounds. Bandwidth can 
be defined from the logarithmic approach or the power spec-
tra [20]. Alternatively, it could also be computed from the en-
tire spectrum or within the spectrum subbands [33]. Accord-
ing to the MPEG-7 standard, bandwidth is defined as the au-
dio spectrum spread (ASS) which is obtained by computing 
the standard deviation of the signal spectrum. 
 
Spectral roll-off point: Spectral roll-off point is defined as 
the N% percentile of the power spectral distribution. N is set 
at the 95th percentile by [27]. It’s a measurement of the skew-
ness of the spectral shape. 
 
Spectral flatness: Spectral flatness measures the flatness of 
the frequency distribution of the power spectrum. It is calcu-
lated by taking the ratio between geometric and the arithmetic 
mean of a subband in the power spectrum [33]. Spectral flat-
ness can differentiate between noise-like sounds and tonal 
sounds. Noise-like sounds and tonal sounds are high and low 
in ratio, respectively. This is beneficial in the musical instru-
ment classification task. 
 
Spectral crest factor: This feature is the contrast of spectral 
flatness. The spectral crest factor measures the spikiness of 
the power spectrum. It can be obtained by finding the ratio of 
the maximum power spectrum and the mean power spectrum 
of a subband. Opposite to the spectral flatness, noise-like 
sounds will show a low spectral crest factor while tonal 
sounds give a higher spectral crest factor. Eronen and Klapuri 
applied crest factors in their research on musical instrument 
classification [34]. 
 
Entropy: Another measurement of spectral flatness is en-
tropy. It is used in measuring the noisiness of the audio signal. 
Shannon entropy is usually computed in different subbands 
[33]. 
 
Spectral slope: Spectral slope is a measurement of the incli-
nation of the spectrum shape by applying the linear regression 
method [35]. 
 
Spectral skewness and kurtosis: Spectral skewness is de-
fined as the asymmetry of the spectral distribution around the 
spectral centroid. Spectral kurtosis, on the other hand, tells 
the spikiness of the frequency spectrum. The value of spectral 
kurtosis is high if the spectrum is spikier and low if it is flatter 
[25]. 
 



 

4.3.3 Tonality-Related Perceptual Frequency Features 

The review by [13] put the features under the tonality cate-
gory differently from the review by [17]. According to [13], 
tonality features are related to the fundamental frequency 
which is defined as the lowest frequency of the stationary har-
monic sound signal. Tonality describes the structure of the 
sounds that constitute the fundamental frequency and its par-
tials. Tonality-related features that are widely used in musical 
instrument classification will be listed and discussed below. 
 
Fundamental Frequency: Denoted as “F naught” or F0, the 
estimation of fundamental frequency could be done with sev-
eral approaches, such as spectral methods, autocorrelation 
methods, or cepstral methods. In the review by [17] and some 
other literature, the fundamental frequency is denoted as a 
pitch of the audio signal. Work by [22] extracted fundamental 
frequency as a feature in instrument recognition. 
 
Harmonicity: Also called partials, harmonics are the integer 
multiples frequencies of the fundamental frequency. They are 
often denoted as F1, F2, F3, etc. Harmonicity features can 
distinguish between periodic and non-periodic sound signals 
and are commonly employed in recognizing musical instru-
ments. There are two measurements of harmonicity accord-
ing to the MPEG-7 standard. The first one is the Harmonic 
ratio which measures the proportion of harmonic components 
in the power spectrum. The other one measures the upper 
limit of harmonicity (ULH) which estimates the frequency 
beyond the spectrum that no longer contains harmonic struc-
ture [36]. 
 
Inharmonicity: Fundamental and its subsequent harmonics 
may not always show perfect harmonicity (integer multiples 
of F0) in the real situation. The actual location of the harmon-
ics may deviate away from its ideal location. This is called 
inharmonicity and is one of the features extracted in musical 
instrument timbre classification [37]. 
 
MPEG-7 Spectral Timbral Descriptors: Several features 
are closely related to the harmonic structure of the sound ac-
cording to the MPEG-7 standard. They are found to be suita-
ble in the discrimination of musical instrument sounds. The 
features are harmonic centroid, harmonic deviation, har-
monic spread, and harmonic variation. The harmonic centroid 
is the amplitude-weighted average of the harmonic frequen-
cies which is related to the sharpness and brightness. Har-
monic deviation measures the deviation of the harmonic 
peaks from their neighboring harmonic peaks. The harmonic 
spread is the power-weighted root-mean-square deviation of 
the harmonic peaks obtained from the harmonic centroid. It 
is related to the bandwidth of the harmonic frequencies. 
Lastly, harmonic variation describes the correlation between 
the two adjacent harmonic peak amplitudes. It represents the 
harmonic variability of the harmonic structure over time. The 
application of these features could be found in the work by 
[12]. 
 

Jitter: Jitter determines the deviations of the cycle-to-cycle 
fundamental frequency. Barbedo and Tzanetakis in their 
work on the classification of musical instruments describe jit-
ter as the measurement of the stability of the partial over time 
[38]. 
 
4.3.4 Chroma-Related Perceptual Frequency Features 

The chroma-related feature is considered as the perceptual 
feature by [17] and is mainly used in musical information re-
trieval as it could describe the octave invariance of the sound 
signal. Chroma is normally ranged to 12 pitch classes, with 
each class one note of the twelve-tone equal temperament 
[39]. Two notes with a separation of one or more octaves are 
said to be having the same chroma. The same chroma means 
that the notes will produce the same effect on human auditory 
perception. 
 
Chromagram: Chromagram is computed from a logarithmic 
Short-Time Fourier Transform to the spectrogram that repre-
sents the energy of the 12 pitch classes. It maps all spectral 
audio information into one octave which results in spectral 
compression. This could be used in describing the harmonic 
musical sound signals. 
 
4.3.5 Loudness-Related Perceptual Frequency Fea-
tures 

Loudness is one of the perceptual features that the human au-
ditory system can sense in listening to the sound signal. Loud-
ness-related perceptual features aim to simulate human hear-
ing ability in the audio retrieval system. Peeters et al. defined 
loudness as the subjective impression of the sound intensity 
[23]. 
 
Loudness: Loudness is computed from the normalized power 
spectrum of the input frame which subtracts an approxima-
tion of the absolute threshold of hearing. It is then filtered by 
gammatone filter banks and the frequencies across are 
summed to obtain the power of each auditory filter. These 
powers which represent the internal excitations will be com-
pressed, scaled, and summed across the filters to extract the 
loudness estimation [40]. 
 
Specific Loudness Sensation: Specific loudness sensation is 
a measurement of loudness in sone units. Sone units are de-
fined as a perceptual scale for loudness measurement accord-
ing to [23]. Pampalk et al. computed this feature by merging 
the spectral masking effect and the Bark-scale frequency 
analysis [41]. 
 
4.3.6 Roughness-Related Perceptual Frequency Fea-
tures 

Roughness is a fundamental hearing sensation that measures 
the sensory dissonance of the sound signals. According to 
[42], the amplitude variations which change rapidly will 
cause unpleasantness and reduce the noise quality, hence de-
ducing that the sound is rough. Computation of roughness can 



 

refer to the work by [31, 40]. The application of roughness as 
a feature in musical instrument classification can see [38]. 
 
4.4 Wavelet Features 
The application of wavelet is based on the division of the con-
tinuous-time signal or given function into different scale 
components [13]. Wavelet transform can extract the desired 
time-frequency components of the musical sound signal. The 
wavelet is decomposed into sub-bands which will be further 
analysed. The characteristics information of the particular 
musical sound signal can then be obtained. According to [43], 
comparing to Fourier transform, wavelet transform has ad-
vantages in showing the functions consisting of discontinui-
ties and sharp peaks. It is also good in constructing and de-
constructing finite non-stationary signals. 
 
Daubechies Wavelet coefficient histogram features: Pro-
posed by [44] in their study on music genre classification, 
Daubechies wavelet coefficient histogram is applied by de-
composing the audio signal by Daubechies wavelet. Histo-
grams are built from the wavelet coefficients obtained for 
each subband. The histograms estimate the waveform varia-
tion of each subband. Wavelet features are obtained by com-
puting the first three statistical moments and the energy of the 
coefficients subband. 
 
4.5 Cepstral Features 
Introduced by [45] with the concept of “cepstrum”, cepstral 
features represent the smoothed frequency based on the log-
arithmic magnitude. It was first employed in speech analysis 
[46] and is now widely used in various fields of audio infor-
mation retrieval. 
 
4.5.1 Perceptual Filter Bank-Based Features 

Perceptual filter banks-based features are computed based on 
the cepstral domain. The sound signal is first Fourier trans-
formed; the magnitude is then converted into the logarithmic 
scale. Discrete Cosine Transform will be performed on the 
previous result to decorrelate the output data. 
 
Mel-frequency cepstral coefficients (MFCCs): Also called 
MFCC, this feature is very well known in automatic speech 
recognition and audio content classification. MFCC is de-
signed and computed based on the human auditory model. To 
extract the MFCC features, the audio signal is framed into 
short frames and the periodogram estimate for each frame is 
computed. Mel frequency is then applied to the power spectra 
before the energy in each filter is summed. All the filterbank 
energies are then logarithmized and lastly, they are decorre-
lated by the Discrete Cosine Transform (DCT). Only 8-13 
DCT coefficients will be used to represents the spectral shape 
of the audio signal. The first DCT coefficients represent the 
spectrum’s mean power. The second coefficient represents 
the spectral centroid. Higher-order coefficients are related to 
spectral details like pitch [17]. Figure 7 shows the MFCCs 
obtained from the flute musical instrument. 

 
Figure 7: MFCCs for the flute musical instrument [17]. 

4.5.2 Autoregression-Based Features 

Autoregression analysis is often used in signal processing. 
This technique uses linear prediction analysis that can predict 
the value of every signal sample by the linear combination of 
previous values [47]. 
 
Complex Cepstrum: According to the [48], complex 
cepstrum is the inverse Fourier transform of the logarithm of 
the signal’s Fourier transform. Application of the complex 
cepstrum on the musical instrument recognition can read the 
work by [49]. 
 
Linear Prediction Cepstral Coefficients (LPCC): Linear 
prediction cepstral coefficients are the alternative for linear 
prediction coefficients (LPC) discussed earlier above. They 
are obtained by the inverse Fourier transform of the log mag-
nitude frequency response of the linear prediction spectral en-
velope [50]. In comparison to LPC, LPCC is more robust in 
representing the spectral envelope. 
 
5 Classification 
After feature extraction and selection, classifiers are used in 
the machine learning system to classify the isolated musical 
sounds into the instrument and its family. In this section, sev-
eral techniques commonly used in automatic musical instru-
ment classification will be discussed. It is worth noting that 
the accuracy or effectiveness of the classifier is affected by 
many factors (number of samples, combination with different 
features, number of samples used in the testing phase and 
training phase, etc.). Therefore, the classifiers in the follow-
ing paragraphs will not include the accuracy obtained by each 
literature reviewed in this paper. 
 
5.1 K-Nearest Neighbours 
Also denoted as KNN, this classifier is one of the popular 
machine learning algorithms. In the training phase, it will 
store the feature vectors from all the training samples and 
then use them in classifying the new test samples. By refer-
ring to the set of k nearest training samples in the feature set, 
the new sample will be assigned to the class with the most 
examples in the set. The system is using the Euclidean dis-
tance measurement method. Details of how the classification 
process goes can refer to the Figure 8 below. 



 

 
Figure 8: Design of the KNN technique. 

From Figure 8 above, the cross is the target of the classi-
fication. If k=3 is selected (inner circle), then the cross would 
be categorized as class P as the three nearest neighbours to 
that cross are mostly from class P. However, if k=7 is selected 
(outer circle), the cross would now be categorized as class Q 
with Q be the majority neighbours.  

k-Nearest Neighbours is a simple algorithm that is 
widely used in the automatic machine learning system, but 
some downsides are to be considered when implementing this 
technique. According to [51], this algorithm is lazy and re-
quires stores all the training samples in the memory to gener-
ate a decision for the new sample. It is also highly sensitive 
to the irrelevant features which could dominate the distance 
metrics. Heavy computational load is another drawback of 
this algorithm. 

 
5.2 Support Vector Machine 
Another popular classifier used is the support vector machine 
(SVM). It is based on the statistical learning theory developed 
by [52]. The working principle of SVM is looking for the op-
timal linear hyperplane which gives the lowest generalization 
errors when classifying the unknown test sample. The linear 
hyperplane is mapped so that the margin between the differ-
ent categories is separated as wide as possible. It serves as the 
borderline between the categories. The new test samples 
could be categorized based on which side they fall when they 
are mapped into space. The hyperplane is a linear line when 
the features can be separated into 2 dimensions. It will be-
come a 2D plane when it is displayed in three-dimension 
space. This approach can be used when linearly hyperplane 
couldn’t separate the data in 2-dimensional space and re-
quires higher dimensional space to do so. This is achieved by 
applying the so-called “kernel trick” as illustrated in Figure 
9. Kernel trick transforms the low dimensional input space to 
a higher dimensional space so that the segregation (hyper-
plane) could take place. 
 

 
Figure 9: (a) Inseparable data in 2D space (b) Hyperplane separat-
ing the data in 3D space with the kernel trick. 

Even though SVM is a popular algorithm used by many 
in their research, SVM does still gives some drawbacks. In 
the multiclassification task, SVM needs to perform a series 
of interconnections between the classes. Computation-wise, 
it is an intensive process to work on. Also, there is a risk of 
selecting the less optimal kernel function during the process. 

 
5.3 Decision Trees 
Decision trees have been pervasively implemented in classi-
fication tasks and machine learning systems. This technique 
attempts to focus on the relevant features and abandons irrel-
evant ones in the construction of the tree. A decision tree is 
built top-down that begins with the most informative root 
node. Usually, two branches will split from the root which 
represents different descriptor values or attribute. Each node 
in the tree represents the test of the samples’ attributes, and 
the descendant node represents the result of the test. The com-
plete tree is built by repeating the training process recursively 
with the training samples. After that, pruning work will be 
carried out to avoid overfitting. The decision tree is com-
monly used in supervised learning methods which produce 
high accuracy, stability, and are easy to interpret. 
 

 
Figure 10: Decision tree in classifying 4 classes of musical instru-
ments. 

In the musical instrument classification task, the decision 
tree can also help in identifying the best feature in discrimi-
nating instruments. From the literature, the common decision 
tree algorithm used is J48 or also known as C4.5. This algo-
rithm is also called a statistical classifier which is developed 
by [53]. 

 



 

5.4 Naive Bayesian Classifiers 
Naïve Bayesian Classifier (NBC) is the classification tech-
nique based on the Bayes’ Theorem. This technique uses a 
conditional probability model in the prediction of classes. Na-
ïve Bayes classifier assumes that the classification features 
are independent, hence it is called “naïve”. Like the other 
classifiers, NBC will be trained by collecting enough training 
samples. The probabilities of different classes and features 
will be obtained by counting the frequencies of their occur-
rence in the training phase. A new sample can then be classi-
fied based on conditional probabilities. BNC is one of the 
easy and fast algorithm one can use in the classification task. 
It requires less training data and is not computationally inten-
sive. However, this algorithm is known as a bad estimator. It 
is also too “naïve” by assuming that the features are com-
pletely independent in real life. Deng et al., in their works on 
the feature analysis for musical instrument classification, 
used the NBC technique as one of the classifiers [12]. 
 
5.5 Artificial Neural Networks 
Artificial neural networks (ANN) are inspired by biological 
neural networks. It is constructed based on a large collection 
of interconnected artificial neurons. These neurons are ar-
ranged into layers in which the transmission of signal hap-
pens from the input layer to the output layer by the connection 
called edges. These edges have a weight that tells the strength 
between the connecting layers. The weight may change dur-
ing the learning process. With sufficient training samples, the 
network becomes capable of predicting the outcome from the 
input. This learning process can be done either supervised or 
unsupervised. The prediction accuracy of ANN is getting bet-
ter when more examples are processed. It keeps on learning 
and refining the weight for every sample processed. Imple-
mentation of ANN in musical instrument classification can 
be found in [10]. 
 
5.6 Hidden Markov Models 
Abbreviated as HMM, Hidden Markov Model is a statistical 
Markov model that contains two components. The first is a 
set of hidden variables that is unobservable directly from the 
data while the second is another set of variables that are con-
ditional on the first set of hidden variables [54]. HMM is used 
in predicting a sequence of the hidden variables from a set of 
observed variables. This allows the model to generate a ran-
dom measurement in each state from a variety of distribu-
tions. 
 
5.7 Gaussian Mixture Models 
The Gaussian mixture model is a probabilistic model to rep-
resenting the subpopulation that is normally distributed 
within the overall population. Without needing to know 
which the data point belongs to, this allows GMM to auto-
matically learn the subpopulation. This model can do the 
clustering of groups of data mixed. This is done by the com-
putation of the three parameters which are the mean, covari-
ance, and the mixing probability of the Gaussian mixture. 
Due to this, GMM is unsupervised learning. This classifier 

has been used in speech recognition, image pattern recogni-
tion, and musical instrument classification. GMM is one of 
the popular classifiers used intensively in instrument classifi-
cation. For instance, refer to [14]. 
 
5.8 Discriminant Analysis 
Discriminant analysis is a technique used in machine learning 
to find the linear, quadratic, or logistic functions of the fea-
tures that characterize or separates samples into two or more 
predefined classes. Discriminant analysis is related to the 
multivariate analysis of variance (MANOVA) and regression 
analysis. This technique could determine the most discrimi-
native features of each class and the most similar or dissimilar 
classes. Martin and Kim used linear discriminant analysis in 
their research on musical instrument identification [55]. 
 
5.9 Higher-Order Statistics  
Higher-order statistics (HOS) is the technique that uses the 
sample function with cubic power or higher. Conventional 
techniques (lower-order statistics) are functions with con-
stant, linear, or quadratic functions. Mean and variance is ex-
amples of lower-order statistics. HOS in the analysis of mu-
sical signals used skewness and kurtosis as the estimation of 
the shape parameters. 
 
6 Conclusion and Future Work 
In this paper, two important steps in the process which are 
feature extraction and classification are reviewed. The appli-
cation of the MIR in classifying musical instruments into dif-
ferent families or individual instruments is gaining wide in-
terest from researchers and musicians. Different approaches 
have been used and they harvested different results. The ef-
fort is to obtain the best feature set which contains either in-
dividual or the combination of temporal, spectral, cepstral, 
and other properties of sound in the classification task. 
Choosing a good classifier is also important in which it can 
better identify the subtle characteristics of different instru-
ments or families.  

From the review in this paper, we have discussed various 
approaches in the features and classifiers used in classifying 
monophonic instrumental sounds. While the coverage of this 
paper is not exhaustive, it is apparent that there is no specific 
feature or classifier which can be considered as the best in the 
musical instrument classification task. Most of the works by 
the literature reviewed in this paper are on the comparison of 
the accuracy obtained by the different combinations of fea-
tures and classifiers. The different combination shows differ-
ent accuracies and also projected both advantages and disad-
vantages. The selection of the appropriate features or classi-
fier is dependent on the specific task of classification. For in-
stance, the complexity of the learning phase, database size, 
real-time limitations, etc. However, it can be concluded that 
fewer features used in the sound recognition system will usu-
ally achieve better accuracy and also reduces the computa-
tional burden.  

It can be noticed that certain literature reviewed is work-
ing on traditional musical instruments. These efforts sparked 



 

the interest of the authors in working towards the classifica-
tion of the sound of the local traditional musical instruments. 
However, our research interest is not in the classification of 
the individual instrument or families. To our knowledge, an 
approach yet to be tested is the ability of the sound classifi-
cation system in identifying the sound quality produced by 
the traditional musical instrument. The current work by au-
thors or any other future efforts can be focusing on the instru-
ments’ sound quality. It is agreeable that “no instruments are 
100% alike”, hence the quality of each instrument might dif-
fer from one another and this is something worth study for. 
The subtle differences in sound quality might create another 
tough challenge in the MIR field, but it is worthy to explore 
for and it is hoped that the new exploration may produce use-
ful knowledge in the future. 
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