
 

COMPARISON OF THE SOUND TRANSMISSION VARIABILITY WITH PUBLISHED RESULTS 

ON COUPLING LOSS 

Max de Castro Magalhaes ∗1 
1Structural Engineering Department, Universidade Federal de Minas Gerais, Belo Belo Horizonte, Brazil 

 
 

Résumé 

Alors que la plupart des prédictions en matière d'acoustique et de conception des bâtiments utilisent invariablement des modèles 
publiés et facilement disponibles, une tentative de quantifier les limites de fiabilité qui couvrent la plupart des cas serait très 
précieuse. Par exemple, il est démontré que certains paramètres (i.e. les dimensions de la pièce, la position des panneaux, 
l'absorption de la pièce, etc) ont un effet substantiel sur la réduction du bruit et le facteur de perte de couplage, ce dernier étant 
un facteur très important pour prédire la transmission du son en utilisant l'analyse statistique de l'énergie (SEA). Un modèle 
SEA a été mis en œuvre et utilisé ici pour la prédiction des facteurs de perte de couplage entre deux pièces. Ainsi, l'objectif 
principal de cette recherche est d'effectuer une étude paramétrique initiale des facteurs de perte de couplage, puis de comparer 
leur variabilité avec les courbes théoriques des limites supérieures et inférieures, précédemment présentées dans la littérature 
pour le couplage des structures. L'utilité de l'EES comme cadre d'analyse peut être évaluée par l'estimation de la variance et 
des intervalles de confiance. En outre, la moyenne spatiale de la pression acoustique carrée pour chaque sous-système SEA a 
été estimée via un modèle de synthèse des modes de composantes développé dans un article précédent. En résumé, les pressions 
acoustiques de la pièce ont été obtenues par une procédure synthèse des modes de composantes et ensuite utilisées dans un 
modèle SEA où les facteurs de perte de couplage équivalents ont été évalués sur la base des hypothèses SEA. L'influence 
d'autres paramètres SEA, tels que la densité modale et le chevauchement modal, a également été prise en compte. 
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Abstract 

Whilst most predictions in building acoustics and design invariably use published and readily available models, some attempt 
to quantify confidence limits that cover most cases would be invaluable. For instance, the parameters (e.g. room dimensions, 
panel position, room absorption, etc.) are shown to have a substantial effect on Noise Reduction (NR) and Coupling Loss Factor 
(CLF), the latter being a very important factor for predicting sound transmission using Statistical Energy Analysis (SEA). A 
Statistical Energy Analysis (SEA) model was implemented and used herein for the prediction of CLFs between two rooms. 
Thus, the main goal this research is to make an initial parametric investigation for the Coupling Loss Factors (CLFs) and then 
compare their variability with theoretical upper and lower bound curves previously presented in the literature for structure 
coupling. The usefulness of SEA as a framework of analysis can be assessed by the estimation of variance and confidence 
intervals. In addition, the spatial-average mean square sound pressure for each SEA subsystem was estimated via a Component 
Mode Synthesis (CMS) model developed in a previous paper. In summary, the room acoustic pressures were obtained via a 
CMS procedure and subsequently used in a SEA model where the equivalent CLFs were evaluated on basis of SEA assump-
tions. The influence of other SEA parameters, such as modal density and modal overlap was also considered. 
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1 Introduction 

Although the phenomenon of sound transmission through 
partitions has been investigated over many years, the problem 
of low frequency sound insulation in buildings is still an ac-
tive research area. Modal methods are widely used for the 
low-frequency analysis of vibro-acoustic problems, including 
the problem of sound transmission between coupled rooms. 
On the other hand, Statistical Energy Analysis (SEA) is 
widely used for mid and high frequency analysis of vibro-
acoustic problems. A general introduction to SEA is given in 
numerous references [1-3] which include discussion on the 
background theories.  

The main advantages of SEA are: it can allow response 
predictions at mid and high frequencies, where other numer-
ical methods cannot be used; the SEA method involves rela-
tively few degrees of freedom in comparison to other deter-
minist models. The main SEA disadvantages are: the accu-
racy of predicted average energy is not guaranteed and the 
model is not capable of modelling local behaviour. Since sta-
tistical approaches give statistical answers, they are always 
subjected to some uncertainties.  

The potential errors in the SEA predictions at low fre-
quencies were investigated by Craik et al [1, 2]. It was shown 
that the vibration level difference between two coupled build-
ing structures fluctuates with frequency significantly since 
building structures have few modes at low frequencies.  
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The Coupling Loss Factor (CLF) is a statistical quantity 
defined in terms of the average behaviour of an ensemble of 
similar subsystems. It relates the power flow between con-
nected subsystems to the stored energy in the transmitting 
subsystem. It is well-known that significant fluctuations with 
frequency are observed in the low frequency range. The 
‘modal overlap factor’ is also an important parameter. It is a 
measure of the degree to which resonant behaviour dominates 
the response. At low modal overlap, which usually corre-
sponds to low frequency, the actual energy transfer between 
subsystems can differ considerably from that predicted using 
the CLF estimates determined from the power transmission 
efficiencies for semi-infinite subsystems. These fluctuations 
are in part due to the particular realization of the subsystems 
within the notional ensemble. 

This paper describes an initial parametric investigation 
into the variability of the effective CLF, in terms of the modal 
overlap factor and the number of modes in a frequency band. 
The reliability and accuracy of this empirical model was dis-
cussed in comparison with previously published models. 

First, the influence of the room dimensions on the CLF 
has been considered. Numerical experiments were made us-
ing sets of simulations, which follow a pre-established anal-
ysis pattern. In other words, this analysis was based on the 
variation of a particular geometrical parameter whilst keep-
ing the others unaltered. Thus, the assessment of the variabil-
ity and sensitivity of transmission efficiencies to a chosen pa-
rameter could be made. In general, there might be some inter-
dependence, but this is outside of the scope of this initial in-
vestigation. A total number of 11 iterations were made in or-
der to simulate the original and modified models in each case. 
The models were obtained by logarithmically varying one di-
mension at a time (height, width, or depth of receiving room) 
whilst keeping the others unaltered. For the baseline model, 
initially a total number of 48, 35 and 97 modes were used for 
room 1, room 2 and partition respectively. The frequency 
range and volume sizes considered dictated the choice of the 
number of modes used. Next, the effects of room absorption 
on transmission are considered and discussed. Finally, the in-
fluence of different panel positions in the common wall be-
tween rooms on CLF is considered. 

Generally, the sound transmission mechanism in a real 
building involves a great number of different and complex 
transmission paths. In SEA these paths are classified as direct 
and flanking paths [4]. In this study, only the direct transmis-
sion was considered in the implemented SEA model, so that 
the problem was described as one room emitting noise and 
another room receiving it. The variation of NR with the ratio 
of the receiving room height to the source room height was 
considered. 

The spatial averaged, time averaged energy for each 
acoustic subsystem was evaluated from this baseline model, 
which consisted of two rooms coupled by a limp partition. 
Later on this paper, one can see that it was necessary to use a 
limp panel model, so that some parameters (in terms of CLF 
variability) defined in the literature could be used herein for 
comparison. 

The performance of a building can be predicted by a 
basic SEA technique, which is described in refs. [1, 2]. The 

power flow between SEA subsystems can be described by the 
coupling between them that takes places at their boundaries.  

The results that are discussed herein were obtained via 
simulations using the CMS model developed previously [5]. 
The analysis was based on considering the influence of some 
variations in the ‘input’ parameters, which are required in the 
pre-processing stage of a numerical experiment, and on the 
subsequent sound transmission mechanisms of typical build-
ing configurations. 

Therefore, the main goal of this paper is to examine the 
variability of CLF to some architectural parameters via a par-
ametric study. This study is aimed at providing not only a 
better understanding of the sound transmission mechanism in 
itself but also to produce a useful set of data which for in-
stance can be used by acousticians as input data for a SEA 
analysis. This data might also be useful for optimizing sound 
insulation in buildings at low frequencies, where the modal 
behaviour of rooms strongly influences the transmission. 
These considerations are discussed in detail in the section 3. 

 
2 The SEA Model 

The simplest method of estimating the CLFs is presented here 
for the sake of simplicity and in order to provide results that 
can be compared with published data [6]. Although this ap-
proach could be used to reduce the computing time required 
to obtain the CLFs, it is subjected to the common limitations 
of the Component Mode Synthesis (CMS) method. 

The main assumption here is that there are only two sub-
systems in the SEA model, which correspond to the source 
and receiving rooms. It seems that this assumed condition is 
reasonable, as the non-resonant transmission or forced trans-
mission is the most important contribution to the transmission 
mechanism. In SEA modelling, one of the most important pa-
rameters is the modal density. It is defined as the number of 
modes that lie in an increment of frequency. For instance, the 
modal density for a standard room is given by [2] 
 

𝑛(𝑓) =
4𝜋𝑓ଶ𝑉

𝑐଴
ଷ +

𝜋𝑓𝑆′

2𝑐଴
ଶ +

𝐿′

8𝑐଴

 (1) 
 

where 𝑉 is the room volume, 𝑆ᇱis the total surface area of the 
room and 𝐿′ is the total perimeter of the room. Table 1 shows 
the variation of the modal density for room 2 in the one-third 
octave band with centre frequency at 250 Hz. The modal den-
sity for room 1 was equal to 0.419 in the same frequency band 
and Ly1 = 1.8 m. According to Figure 1, the power balance 
equations for the two coupled rooms (which are represented 
by the subscripts 1 and 2 and excited one at a time are then 
given by [3] 
 

𝑃ଵ,௜௡
ଵ = 𝑃ଵ,ௗ௜௦௦

ଵ + 𝑃ଵଶ
ଵ = 𝜔(𝜂ଵ𝐸ଵ

ଵ + 𝜂ଵଶ
ଵ 𝐸ଵ

ଵ − 𝜂ଶଵ
ଵ 𝐸ଶ

ଵ)  (2) 
 

0 = 𝑃ଶ,ௗ௜௦௦
ଵ + 𝑃ଶଵ

ଵ = 𝜔(𝜂ଶ𝐸ଶ
ଵ + 𝜂ଶଵ

ଵ 𝐸ଶ
ଵ − 𝜂ଵଶ

ଵ 𝐸ଵ
ଵ)  (3) 

 
𝑃ଶ,௜௡

ଶ = 𝑃ଶ,ௗ௜௦௦
ଶ + 𝑃ଶଵ

ଶ = 𝜔(𝜂ଶ𝐸ଶ
ଶ + 𝜂ଶଵ

ଶ 𝐸ଶ
ଶ − 𝜂ଵଶ

ଶ 𝐸ଵ
ଶ)  (4) 

 
0 = 𝑃ଵ,ௗ௜௦௦

ଶ + 𝑃ଵଶ
ଶ = 𝜔(𝜂ଵ𝐸ଶ

ଶ + 𝜂ଵଶ
ଶ 𝐸ଵ

ଶ − 𝜂ଶଵ
ଶ 𝐸ଶ

ଶ)  (5) 
 

where 𝜂௜ is the internal loss factor for each subsystem, 𝐸௜ is 
the spatial averaged, time averaged energy in subsystem 𝑖. 
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The CLF from subsystem 𝑖 to subsystem 𝑗 is denoted 𝜂௜௝, 𝜔 
is the angular frequency in radians per second, 𝑃ௗ௜௦௦ and 𝑃௜௡ 
are the time averaged dissipated and input powers respec-
tively, 𝑃௜௝ is the power transmitted from subsystem 𝑖 to sub-
system 𝑗. The superscripts 1 and 2 indicate in which subsys-
tem the excitation is applied separately one at a time.  

Therefore, by assuming that 𝜂௜௝
ଵ = 𝜂௜௝

ଶ  and according to 
the concept of power injection method [2, 3], the ‘effective’ 
CLF 𝜂௜௝ for two conservatively coupled subsystems 1 and 2 
can be obtained by rearranging the equations (3) and (5) as 
 

 ቄ
𝜂ଵଶ

𝜂ଶଵ
ቅ =

1

𝜔
൤

𝐸ଵ
ଵ −𝐸ଶ

ଵ

−𝐸ଵ
ଶ 𝐸ଶ

ଶ ൨
ିଵ

൜
𝜔𝜂ଶ𝐸ଶ

ଵ

𝜔𝜂ଵ𝐸ଵ
ଶൠ (6) 

 

A limp panel model with nominal density equal to 
8.1 kg/m2 was considered. The thickness of the partition was 
0.01 m. A Reverberation Time (RT) 𝑇଺଴=1 s was considered 
herein.  

For instance, the fraction of maximum stored energy of 
subsystem 1 transmitted to subsystem 2 per cycle is 2𝜋𝜂ଵଶ, 
where 𝜂ଵଶ is the CLF. This is defined in the similar way to 
the definition of the loss factor 𝜂 of a subsystem, namely 2𝜋𝜂 
is the fraction of the maximum stored energy which is lost or 
dissipated per cycle. This can be lost through mechanical and 
thermal means or can take into account losses due to other 
subsystems, which have not been explicitly defined. 

 
 

  

  

  

  

1
,1 inP

1
1E

1
,1 dissP

1
12P

1
21P

1
2E

1
,2 dissP

 
a) 

 

 

  

  

  

2
,2 inP

2
1E

2
,1 dissP

2
12P

2
21P

2
2E

2
,2 dissP

 
b) 

Figure 1: SEA models of two rooms separated by a single-leaf 
partition approximated by a two-subsystem model. Therefore, only 
the non-resonant transmission path is considered. a) Power is in-
jected into subsystem 1; b) Power is injected into subsystem 2. The 
subscripts ‘i j’ denote the power flow from subsystem ‘i’ to sub-
system ‘j’ and the superscript indicates which subsystem is under 
direct excitation. 

The spatial average time averaged energy for an acoustic 
subsystem 𝑖 can be obtained according to the general expres-
sion [1] 
 

 𝐸௜ = ቆ
〈𝑝ప

ଶതതത〉𝑉௜

𝜌଴𝑐଴
ଶ ቇ (7) 

 

where 𝑉௜ is the volume of subsystem 𝑖 and 〈𝑝ప
ଶതതത〉𝑉௜ is the spa-

tial averaged mean square pressure in subsystem 𝑖. This has 
been obtained by using the CMS model derived in [1], which 
was modified to calculate the coupling between the volumes 
by a limp panel. The calculations were run with no dissipation 
in the limp panel. 

Likewise, the total loss factor of a particular acoustic 
subsystem 𝑖 may be approximated by the expression [1] 
 

 𝜂௜ =
13.8

𝜔𝑇଺଴,௜

 (8) 
 

where 𝑇଺଴,௜ is the RT of the subsystem 𝑖. 
For the SEA simulations 𝑇଺଴,௜ was constant and equal to 

1.0 s. Equation (8) is a general expression for the total loss 
factor which only gives the damping loss factor for weakly 
coupled systems (i.e. CLFs << internal loss factor) as meas-
urements for the RT will normally include some effect of dis-
sipation from other subsystems connected to the volume. 
Therefore, a value of 𝑇଺଴was set and then used to infer the 
damping loss factor. 

Although the CLFs are only defined for finite systems, 
an expression for the CLF of ‘semi-infinite’ acoustic subsys-
tems can be obtained by assuming diffuse field conditions in 
both rooms. In addition, it is assumed that there is direct 
transmission between rooms, where forced transmission is 
the most important contribution. Thus, the CLF 𝜂ଵଶ  from 
subsystem 1 to subsystem 2, is given approximately by [1] 
 

 𝜂ெ௅ ≈
𝑐଴ 𝑆 𝜏ஶ

4 𝜔 𝑉ଵ

 (9) 
 

where  𝜏ஶ is the diffuse transmission efficiency obtained via 
Mass Law theory described in ref. [5],  𝑉ଵ is the volume of 
the source room and 𝑆 is the partition area. 

The CLF 𝜂ଶଵ can also be obtained from 𝜂ଵଶ by the con-
sistency relationship [3] 
 

 𝑛ଵ𝜂ଵଶ = 𝑛ଶ𝜂ଶ (10) 
 

Where 𝑛ଵ and 𝑛ଶ are the modal densities (see equation 1) for 
subsystems 1 and 2 respectively. 

The variability of the CLFs with the subsystem proper-
ties in SEA models have been recently studied by Park et al 
[6]. A sensitivity analysis was performed using an analytical 
model for two coupled plates. The Dynamic Stiffness Method 
was used in the evaluation of their model. Thus, an ‘empirical 
model’ for the variability of CLF (𝜎ଶ) was derived for two 
coupled finite plates according to the expression [6] 
 

 𝜎ଶ =
6

𝑀௖௢௠௕ + 𝑁௖௢௠௕
ଶ /16

 (11) 
 

where 
 

 𝑀௖௢௠௕ =
2𝑀ଵ𝑀ଶ

𝑀ଵ+𝑀ଶ

 (12) 
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 𝑁௖௢௠௕ =
2𝑁ଵ𝑁ଶ

𝑁ଵ+𝑁ଶ

 (13) 
 

where (𝜎ଶ  is the variance of the dB values; 𝑀௖௢௠௕  and 
𝑁௖௢௠௕are the combined modal overlap factor and number of 
modes respectively, 𝑀ଵ and 𝑀ଷ are the modal overlap factors 
for subsystems 1 and 2 respectively. They are defined as the 
ratio of the modal bandwidth to the average frequency spac-
ing between modes [2]. Similarly, 𝑁ଵand 𝑁ଶ  are the mode 
counts for subsystem 1 and 2.  

It has been established in ref. [6] that this variance rep-
resented a 95.7% confidence interval for all set of data con-
sidered for two coupled rectangular plates. Nevertheless, it is 
not known whether the acoustic system presented herein can 
be represented by the same value of confidence interval.  
 
3 Results and discussions 

Results were obtained in terms of the variation of the CLF 
ratio with the combined modal overlap factor 𝑀௖௢௠௕  for dif-
ferent room configurations. The numerical frequency range 
covered was 0 to 500 Hz, although the results are only plotted 
at values where at least one non bulk mode exists in either 
room. Firstly, the CLF ratio, in Figures 2-6, was defined as 
the ratio of the ‘effective’ CLF (equation 6), obtained for a 
particular system configuration, to the averaged ‘effective’ 
CLF, which was obtained by considering the mean value over 
all of the different configurations of a particular parameter, 
e.g. the height ratio of the rooms. The results were calculated 
in sets of one-third octave bands. Figures 2-4 show the vari-
ation of CLF ratio with 𝑀௖௢௠௕  whilst varying the height, 
width and depth ratio of the rooms. In Figure 2, the source 
room height was fixed and equal to 1.8 m. The receiver height 
varied from 1.8 to 18 m (see Table 1 below).  

Table 1: Variation of room parameters with the height ratio 
Ly2/Ly1. Lx, Ly and Lz are room depth, height and width respec-
tively.𝑛(𝑓) is the modal density in the highest 1/3 octave band 
with centre frequency equal to 250 Hz and 𝑓ௌ௖௛௥  is the Schroeder 
frequency (Hz) above which the acoustic field is assumed to be 
diffuse. The subscripts 1 and 2 represent the source and receiving 
rooms respectively. 

Ly2/Ly1 Ly2(m) 𝑛ଵ(𝑓) 𝑛ଶ(𝑓) 𝑓ଵ,ௌ௖௛௥  𝑓ଶ,ௌ௖௛௥  

1.000 1.800 0.419 0.290 430.3 527.0 
1.259 2.266 0.419 0.356 430.3 469.7 
1.585 2.853 0.419 0.438 430.3 418.6 
1.995 3.591 0.419 0.542 430.3 373.1 
2.512 4.522 0.419 0.673 430.3 332.5 
3.162 5.692 0.419 0.837 430.3 296.4 
3.981 7.166 0.419 1.045 430.3 264.1 
5.012 9.022 0.419 1.305 430.3 235.4 
6.309 11.356 0.419 1.634 430.3 209.8 
7.943 14.297 0.419 2.047 430.3 187.0 
10.000 18.000 0.419 2.567 430.3 166.6 

 
It is seen that the results lay within the bounds for most of the 
𝑀௖௢௠௕  range. At higher frequencies, the CLF ratio values 
vary within the range ±1 dB. Likewise, Figures 3 and 4 also 

show that the convergence of the results rapidly increases 
with the combined modal overlap factor.  

 

 
a) 

 
b) 

Figure 2: Variation of CLF ratio with the combined modal overlap 
factor 𝑀௖௢௠௕ for different values of height ratio (Ly2/Ly1) com-
pared to the average over all of the height variations. 
(a): 10 logଵ଴(𝜂ଵଶ/𝜂ଵଶ,௔௩௘) [dB re 1];  
(b): 10 logଵ଴(𝜂ଶଵ/𝜂ଶଵ,௔௩௘)  [dB re 1].  
The height of room 1 (Ly1) is 1.8 m. The height of room 2 (Ly2) 
varies from 1.8 to 18 m;  1.8 m; …… 2.27 m; -- 2.85 m;  
-o- 3.59 m; -- 4.52 m; -- 5.69 m; -- 7.16 m; -x- 9.02 m;  
-- 11.36 m; -- 14.29 m; ---- 18 m; +++ bounds (±2𝜎) for Ly2 = 
1.8 m;  bounds (±2𝜎) for Ly2 = 18 m. 

Figure 3 shows that at higher modal overlap factors, the 
CLF ratio values tend to be less than ±0.5 dB. At low fre-
quencies, variability of the effective CLFs is particularly 
large, while it generally reduces as frequency increases.  

However, in Figure 4, the case of varying the depth 
shows large variation at high frequencies. It might be due to 
the influence of axially directed modal pattern of pressure 
that propagates above its cut-off frequency.  

Figure 5 shows the variation of CLF ratio with 𝑀௖௢௠௕ 
for different values of the RT ratio (𝑇଺଴,ଶ/𝑇଺଴,ଵ). The RT of 
the source room was fixed and equal to 1.0 s. However, for 
the receiving room it was varied from 1.0 s to 0.2 s. It appears  
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a) 

 
b) 

Figure 3: Variation of CLF ratio with combined modal overlap 
factor 𝑀௖௢௠௕ for different values of width ratio (Lz2/Lz1) compared 
to the average over all of the width variations.  
(a): 10 logଵ଴(𝜂ଵଶ/𝜂ଵଶ,௔௩௘) [dB re 1];  
(b): 10 logଵ଴(𝜂ଶଵ/𝜂ଶଵ,௔௩௘)  [dB re 1]. 
The width of room 1 (Lz1) is 2 m. The width of the room 2 (Lz2) 
varies from 2 to 20 m;  2 m; …… 2.52 m; -- 3.17 m; -o- 3.99 m; 
-- 5.02 m; -- 6.32 m; -- 7.96 m; -x- 10.02 m; -- 12.62 m;  
-- 15.89 m; ---- 20 m. +++ bounds (±2𝜎) for Lz2 = 2 m; 
 bounds (±2𝜎) for Lz2 = 20 m. 

that the most significant variations in terms of the CLF ratios 
occurred for the case of varying the RT of the source room 
whilst keeping the RT of the receiving room constant. As the 
RT of both rooms increase, the variation in the effective CLF 
becomes small. At high frequencies (above the Schroeder fre-
quency [5]) when the RT is decreased, the modal overlap fac-
tor is increased and vice-versa. This results in a higher prob-
ability of better coupling between individual modes and 
therefore lower sound insulation.  

Figure 6 shows the variation of CLF ratio with 𝑀௖௢௠௕ 
for different values of panel position on the common rigid 
wall. Very small variation is observed at the lower values of 
𝑀௖௢௠௕ , i.e. at lower frequencies for the source and receiving 
rooms where there are few if any acoustic modes and trans-
mission is low. On the other hand, significant variations oc-
cur in the range where acoustic modes exist. These variations  

 
a) 

 
b) 

Figure 4: Variation of CLF ratio with the combined modal overlap 
factor 𝑀௖௢௠௕ for different values of depth ratio (Lx2/Lx1) compared 
to the average over all depth variations.  
(a): 10 logଵ଴(𝜂ଵଶ/𝜂ଵଶ,௔௩௘) [dB re 1];  
(b): 10 logଵ଴(𝜂ଶଵ/𝜂ଶଵ,௔௩௘)  [dB re 1].  
The depth of room 1 (Lx1) is 3 m. The depth of the room 2 (Lx2) 
varies from 3 to 30 m;  3.00 m; …… 3.77 m; -- 4.76 m;  
-o- 5.99 m; -- 7.54 m; -- 9.49 m; -- 11.94 m; -x- 15.04 m; 
 -- 18.93 m; -- 23.83 m; ---- 30 m. +++ bounds (±2𝜎) for Lx2 = 
3 m;  bounds (±2𝜎) for Lx2 = 30 m. 

indicate very high spatial coupling sensitivity. When the fre-
quency increased, oblique modes tended to be dominant in 
the rooms and the difference between the panel positions be-
came less important on the sound insulation.  

The CLF ratio, in Figures 7 and 8, was calculated as the 
ratio of the ‘effective’ CLF to the one obtained using equation 
(9). Although an average result was used for reference, it did 
not converge to the diffuse incidence Mass Law. It is shown 
that the variation of CLF ratio, which is defined here as the 
ratio of the actual transmission to the diffuse incidence Mass 
Law transmission, with 𝑀௖௢௠௕  whilst varying the height and 
width of the receiving rooms.  

In Figure 7, the source room height was fixed and equal 
to 1.8 m. The receiver height varied from 1.8 to 18 m. It is 
seen that the results approximately lay on the upper bound for 
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a) 

 
b) 

Figure 5: Variation of CLF ratio with the combined modal overlap 
factor 𝑀௖௢௠௕ for different values of RT ratio (𝑇଺଴,ଶ/𝑇଺଴,ଵ) com-
pared to the average over all of the RT variations 
(a): 10 logଵ଴(𝜂ଵଶ/𝜂ଵଶ,௔௩௘) [dB re 1];  
(b): 10 logଵ଴(𝜂ଶଵ/𝜂ଶଵ,௔௩௘)  [dB re 1].  
The RT of the room 1 (𝑇଺଴,ଵ) is 1.0 s. The RT of room 2 (𝑇଺଴,ଶ) 
varies from 1 s to 0.2 s;  1 s; …… 0.8 s; -- 0.6 s; -o- 0.4 s;  
-- 0.2 s. +++ bounds (±2𝜎) for 𝑇଺଴,ଶ = 1 s;  bounds (±2𝜎) for 
𝑇଺଴,ଶ = 0.2 s. 

most of the 𝑀௖௢௠௕  range. However, they tend to diverge from 
the mass law results 𝜂ெ௅ as the combined modal overlap in-
creases.  

Likewise, Figure 8 shows that the mass law results 𝜂ெ௅ 
are lower than the ‘effective’ CLFs at low frequencies. These 
deviations at high frequencies might be due to effect of reso-
nant modes in the source and receiving rooms included in the 
CMS model but not in the incident diffuse field mass law as-
sumptions. In other words, this fact was predictable at low 
frequencies, where the diffuse incidence mass law overesti-
mated the transmission efficiency due to the assumption of 
diffuse field behavior in the source room. To quantify the re-
liability of results from the SEA predictions, an investigation 
on the confidence interval of the coupling between the parti-
tion and the acoustic room is also required.  

 
 

 
a) 

 
b) 

Figure 6: Variation of CLF ratio with the combined modal overlap 
factor 𝑀௖௢௠௕ for different values of panel position on the common 
wall compared to the average over all of the panel positions. 
(a): 10 logଵ଴(𝜂ଵଶ/𝜂ଵଶ,௔௩௘) [dB re 1];  
(b): 10 logଵ଴(𝜂ଶଵ/𝜂ଶଵ,௔௩௘)  [dB re 1]. 
 P1; …… P2; -- P3; -o- P4; -- P5; -- P6; -- P7; -x- P8; -- P9;  
-- P10.   upper and lower bounds (±2𝜎) obtained from equation 
(11). 

There are many uncertainties and potential errors in the 
low to mid frequency range that still need to be contemplated 
in the SEA models. At low modal overlap (𝑀< 0.4) the results 
fluctuate considerably, and most are found to fall within the 
bounds described herein. The results below the first cut-on 
frequency of either room were discounted as SEA assump-
tions would not be valid. For multiple subsystems models the 
CLFs will not be independent and the SEA prediction re-
quires more detailed investigation. 

The ‘effective’ CLF tends to be lower than the 𝜂ெ௅ when 
frequency increases. For a large bandwidth the number of 
modes in a frequency band is much more important than the 
modal overlap factor. 

In summary, the results obtained shows the variability in 
the CLF using two coupled acoustic rooms as an example to 
quantify the uncertainties in the CLF. The CMS was used to 
quantify the sound pressure response in a wide frequency 
range. It is seen that a wide range of parameter investigations  
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a) 

 
b) 

Figure 7: Variation of CLF ratio with the combined modal overlap 
factor 𝑀௖௢௠௕ for different values of height ratio (Ly2/Ly1) com-
pared to the diffuse incidence Mass Law.  
(a): 10 logଵ଴(𝜂ଵଶ/𝜂ெ௅) [dB re 1];  
(b): 10 logଵ଴(𝜂ଶଵ/𝜂ெ௅)  [dB re 1]. 
The height of room 1 (Ly1) is 1.8 m. The height of room 2 (Ly2) 
varies from 1.8 to 18 m;  1.80 m; …… 2.27 m; -- 2.85 m;  
-o- 3.59 m; -- 4.52 m; -- 5.69 m; -- 7.16 m; -x- 9.02 m;  
-- 11.36 m; -- 14.29 m; ---- 18 m; +++ bounds (±2𝜎) for Ly2 = 
1.8 m;  bounds (±2𝜎) for Ly2 = 18 m. 

was performed using two acoustics volumes separated by a 
limp panel. At low modal overlap the CLFs fluctuated with 
frequency considerably, whereas the variability generally re-
duced as frequency increased. As the modal overlap factor 
increases, the bounds of the SEA simulation decrease 
slightly. It was shown that the SEA predictions are more re-
liable when the modal overlap factor and frequency band-
width are large [6], as expected according to the fundamental 
SEA hypothesis.  
 
4 Conclusion 

Numerical simulations for the investigation of the variation 
of CLF ratio with the combined Modal Overlap Factor were 
obtained for a limp panel model. Hence, there was no reso-
nance contribution of the panel on the frequency response of 

 
a) 

 
b) 

Figure 8: Variation of CLF ratio with combined modal overlap 
factor 𝑀௖௢௠௕ for different values of width ratio (Lz2/Lz1) compared 
to the diffuse incidence Mass Law.  
(a): 10 logଵ଴(𝜂ଵଶ/𝜂ெ௅) [dB re 1];  
(b): 10 logଵ଴(𝜂ଶଵ/𝜂ெ௟)  [dB re 1]. 
The width of room 1 (Lz1) is 2 m. The width of the room 2 (Lz2) 
varies from 2 to 20 m;  2 m; …… 2.52 m; -- 3.17 m; -o- 3.99 m; 
-- 5.02 m; -- 6.32 m; -- 7.96 m; -x- 10.02 m; -- 12.62 m;  
-- 15.89 m; ---- 20 m. +++ bounds (±2𝜎) for Lz2 = 2 m;  
 bounds (±2𝜎) for Lz2 = 20 m. 

the system. Even though there was no stiffness term in the 
equation of motion of the panel, i.e. the panel was limp, its 
mass term was allowed to contribute.  

The sound transmission results thus had no resonant 
panel behaviour, and the variation of results were mainly due 
to the panel position and also the matching or separation of 
the room natural frequencies (i.e. modal overlap).  

The results were then compared to previously published 
envelope results given for structure-to-structure coupling 
limits (Park et al in reference [6]). It is seen that most of the  
results, which are presented in terms of CLF ratio, fit reason-
ably well within the published envelope results [6] for the 
frequency range investigated. Only the results due to varia-
tion of the panel position are not such a good comparison and 
it is suspected that this might be due to extreme sensitivity of 
the modal model to the spatial coupling terms. The actual 
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fluid-structure interaction problem considered herein was 
evaluated at very low frequencies. In addition, small acoustic 
volumes were considered for the baseline models. Conse-
quently, small values of Modal Overlap Factors were ob-
tained. The envelope results presented by Park et al [6] were 
developed on the basis of only two coupled subsystems, 
namely two coupled rectangular plates. Hence, there was no 
‘intermediate’ connection between them, such as a beam. In 
other words, the modal model formulated here was equivalent 
to the structure-to-structure coupling problem published in 
ref. [6], as the model herein considered the contribution of a 
limp partition with no modes on the transmission mechanism.  

No attempt has been made here to produce alternative 
limits for the acoustic-structural problem, as it does not ap-
pear to be particular easy to solve or generalize. 
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