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Abstract. ' The frequency and amplitude of' the 
first !ormant are not easy to measure as fundamental 
frequency (fO) varies in speech. Perceptual data 
indicate that the ~uditory system is not bothered by 
changes to ro, but processing strategies used in 
speech recognition, such as linear prediction, 
filterbank analysis, and the synchrony spectr1.1111 are 
seriously perturbed as fO varies. The irrelevant 
variation makes it difficult/unreliable to~perform 
phonetic comparisons between similar vowels based on 
simple ideas of pattern similarity. Of the possible 
solutions to this problem considered here, the one of 
greatest practical attraction is to implement a 
sYnchrony spectrum representation of vowel-like speech 
sounds, and a "learned pattern equivalence" approach 
to vowel phonetic-quality equivalence across different 
fundamental frequencies. 

DFT magnitude spectra (25.6 ms Hamming window) of 
the lowest 1 kHz of' a series 0£ 5 kHz synthetic vowels 
are shown in Figure 1, All synthesis parameters have 
been held constant across stimuli except for the 
fundlll1lental frequency of voicing (fO), which hes been 
assigned a different constant value for each stimulus. 
The stimuli were devised to illustrate the problem of 
estimating the frequency (F1) and level (A1J of the 
.first formant as fundamental frequency changes. 
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Figure 1. DFT magnitude spectra of 9 synthetic vowel 
stimuli varying only in ro. 

The first formant frequency is 400 Hz in each 
synthetic wavefom, and the first formant bandwidth is 
50 Hz. These values. as well as the chosen 
frequencies and bandwidths of higher formants (F2=1800 
Hz, B2=140, F3=2900, B3=240, F4=3800 1 B4=350), are 
typical for a vowel such as in the word "bit" (Klatt 
1960), Fundamental frequencies were selected in equ~l 
logarithmic steps from 133 Hz to 200 Hz. For the 
lowest fundamental, the third harmonic is exactly 
aligned with the 400 Hz first formant frequency; for 
the highest fundamental in the set of stimuli, the 
second harmonic is exactly aligned with the first 
formant £requency, For stimuli with intermediate 
Values of fundamental frequency, no harmonic is 
exactly aligned with F1, and one has to interpolate by 
:ye to determine the probable location of the first 

0rmant, This interpolation is not easy to perform 
~tomatically, as will become clear when we discuss 
re performance of various popular algorithms for 
r~rniant estimation. There is a tendency for the first 
trrmant frequency estimate to be biased toward the 
anequency of the most intense harmonic, resulting in 
at~rr

1
or of u~ to plus-or-minus 8 percent for this 

u us set lTable 1), 
F'1 Furthennore, the amplitudes of harmonics close to 
111:1:ri considerably less intense £or intermediate 
are~ i of the stimulus set. The harmonic amplitudes 
'tz-actetermined by the transfer function of the vocal 
hal'lllo•

1
Which peaks rather sharply at 400 Hz, If no 

atten~ c is near F1 , the strongest harmonic can be 
that ated by up to 9 dB, resulting in a spectral peak 
or 8 is attenuated by as much as 6 dB (filter banks) 
(PantdB (linear prediction), which agrees with theory 
11pe8 chand( Liljencranta, 1962) and measurements of real 
tol'!Qan Finto£, Lindblom and Hartony, 1962). The 
er8 at amplitude misestimates 0£ linear prediction 
conaidresult of miseatimating formant bandwidths by a 

erable factor (Atal and Schroeder, 1975), 5 

STIM fO F1 HARMON FB LP 
A 200 400 400 400 400 
B 189 400 378 382 389 
C 179 400 358 367 384 
D 169 400 338 371 398 
E 160 400 amb. 401 425 
.F 152 400 456 430 436 
G 145 400 435 430 432 
H 139 400 417 417 423 
I 133 400 399 400 400 

KAX ERROR: +16% +7'1, +9:C 
-15% -8% -4% 

Table 1. First formant frequency predictions of 
nearest harmonic hypothesis (HARMON), peak location in 
wide-bandwidth filter bank (FB) 1 and linear prediction 
spectrum (LP). Error increases if fO is increased or 
BW1 is decreased. 

According to one theory (HARMON in Table 1), the 
first formant is perceived to be the frequency of the 
strongest harmonic, at least for fundamental 
frequencies such that the ear can resolve individual 
harmonics (Chistovich, 1971), 

Accordins to a second theory, the £ormant peak is 
found by smoothing the spectrum in frequency such that 
individual harmonics are not seen (Chistovich et al., 
1979), This proposal is similar in effect to earlier 
models which proposed to weight the importance of two 
strong harmonica according to the relative strength of 
their auditory representations (Carlson, Fant and 
Granstrom, 1975). In order to test the predictions of 
this theory, a particular smoothing algorithm was 
chosen - the d!t spectrum was smoothed by a 300-Hz 
wide Gaussian filter. As can be seen from Table 1, 
the energy smoothing model predicts that the perceived 
formant frequency will be somewhere between the "true" 
400 Hz synthetic formant and the strongest harmonic • 
The amount of formant shift with changes to 
fundamental frequency is, however! quite large (see 
also Lindblom, 1962; Monsen, 19xxJ. Stimuli C and F 
differ by 63 Hz according to this model, which 1s 16 
percent of F1. This difference would be easily 
audible because the JND for F1 is about 3% (Flanagan, 
1955; Mermelstein, 1978), Thus Stimuli C and F 
should be heard as different vowels (/ i/ and /I/) if 
this model were an accurate predictor of perceptual 
fonnant shifts with changes in formant/harmonic 
relationships. Apparently, the problem with the 
energy smoothing model is that a harmonic changes 
amplitude very rapidly as it slides down the skirt of 
a formant with a narrow (50 Hz) bandwidth. As soon as 
a harmonic is reduced by 4 to 6 dB below an adjacent 
harmonic, it hardly influences the location of the 
peak in the energy-smoothe~ spectrum, 

According to a third theory, linear prediction 
spectra (autocorrelation form , 14-pole, 25,6 ms 
Ha11ming window) can extract F1 as the peak in the LP 
spectrum. Linear prediction fits an all-pole model to 
the waveform (Atal and Hanauer, 1971; Markel, 1972) or 
spectrum (Makhoul, 1975), thereby providing a method 
for effectively interpolating between harmonic 
locations to infer formant peaks, It is a 
particularly good model to apply to these stimuli 
since they were generated by an all-pole synthesizer 
and have virtually no noise or voicing source 
irregularities. The predictions of the linear 
prediction model are shown in the final column of 
Table 1. Linear prediction is not much better in 
performance than simple energy smoothing: there is a 
52 Hz swing in the predicted F1 from stimulus C to F, 
which is a 13 percent change. Also, there is a slight 
bias toward overestimating F1 because the first 
harmonic amplitude is attenuated by the first 
difference analysis calculation, The reason that 
linear prediction does no better than the energy 
smoothing model is that the autocorrelation method 
uses a window of several pitch periods in duration, 
which means that the model must try to predict not 
only the damped vocal tract response to the first 
excitation at the beginning 0£ the window, but also 
the time and magnitude of additional later glottal 
excitations and damped responses to them (Atal and 
Schroeder, 1975). 



Perceptual Data. Does the human perceptual 
apparatus employ processing strategies which make all 
of these stimuli sound like exactly the same vowel {F1 
the same) with the s11111e loudness (vocal effort the 
same)? Naively, one might expect that if these 
stimuli are played in succession, one would hear not 
only a change in pitch, but also changes in loudness, 
spectral tilt, and vowel quality. 

1 First Formant Am litude and Perceived 
Loudness. o eee w e er orman amp u e c anges 
produce loudness differences across stilluli, Stimulus 
E was synthesized in ite standard for111 and with 
1,2, ••• 6 dB added to the voicing sound source 
intensity. This set of stimuli wae compared with both 
Stimuli A and I in unaltered form, using an "AX" 
randomized sequence in which subjects made a forced 
choice as to whether the first or second member of the 
pair was louder. Results from four listeners indicate 
a perceptual equal-loudness crossover at 2.0 dB. Thus 
when the pair of harmonics straddling F1 are 8 dB less 
intense (Stimulus E) than the single harmonic 
identical to F1 (Stimulus I), one must increase the 
level by only 2 dB to match subjective loudness. 

Hormally, it is said that loudness of a vowel 
depends primarily on the energy at F1, since this is 
usually the most intense part of the spectrW11. We see 
that this is not the entire story because Sti~uli E 
and I differ by 6 to 9 dB (depending on how energy 
near F1 is estimated), whereas an increase of only 2 
dB makes these stimuli sound equally loud. Other 
possible determinants of vowel loudness are (1) the 
intensities of harmonica below F1, (2) energy in 
higher formants, (}) spectral tilt, and (4) the 
inferred shape of the vocal tract transfer function, 
i.e. the transfer function peak height instead of 
physical energy present at F1. Any one of these other 
potential cues could account for our loudness 
judgement results. 

The variation in spectral amplitude of F1 as fO 
is changed may be just as serious a deficiency of 
these spectral representations ae mislocations of F1 
in frequency. Any speech recognition device employing 
a distance metric that is sensitive to differences in 
relative formant amplitudes, auch as the Itakura 
{1975) linear-prediction minimum prediction residual? 
or a filter-bank-based Euclidean metric (Plomp, 1970J, 
will see considerable differences as fO varies, even 
though the vowel is phonetically constant. Thia 
irrelevant variability can swamp out an ability to 
make fine phonetic distinctions in any current 
recognition device employing filter banks or linear 
prediction representations. 

(2) First Formant Fre uenc and Perceived Vowel 
Quall y. n o a percep ua e ec on vowe 
quallty is to be expected when fO is changed? One 
possibility is that the auditory system somehow is 
able to extract the true F1, so vowel quality is 
unaffected. A second possibility is that the auditory 
system is fooled, or partially fooled, in exactly the 
same way as our processing schemes. A third 
possibility, one that somewhat confounds the choice 
between these alternatives, is that a change in fO 
automatically invokes a kind of vowel-normalization 
process such that vowels spoken at higher fO are 
assumed to come from shorter vocal tracts (Miller, 
1953; Fujisaki and Kawashima, 1968; Carlson, 
Granstrom and Fant, 1970; Schwartz, 1971; Slawson, 
1968; Traunmuller, 1982; Syrdal, 1985). A listening 
test was devised to distinguish among these 
alternatives (Klatt, 1985). Results showed 
convincingly that the auditory system is able to 
recover the true F1 with no bias toward the strongest 
harmonic, but there is also an automatic normalization 
process which makes it seem as if the vocal tract is 
shorter ae fO increases. 

DISCUSSION 

Our perceptual results are consistent with those 
of an excellent earlier paper that addressed the same 
issues (Carlson et al., 1975), They too found a 
regular shift in phonetic perception consistent with 
the view that fO affects expectations of the vocal 
tract length of a talker. The authors examined their 
data to determine whether any phoneme boundary shifts 
could be attributed to perceptual biases toward the 
strongest harmonic, or toward a weighted mean of 2 or 
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more harmonics. The weighting scheme that they 
employed was not the same as ours in that it did not 
weight harmonica according to their energy, and they 
did not examine an ro range where harmonic biases go 
in an opposite direction from normalization biases, 
but the conclusions were the same -- there was no 
evidence of a bias toward the strongest harmonic as 
opposed to F1 (see also Florin, 1979; Assmann and 
Nearey, 198}; Darwin and Gardner, 1985), 

So far this has been a largely negative paper: we 
have isolated defects in most speech processing 
algorithms that lead to unnecessary spectral 
confusions, but we have not provided any solutions. 
Three possible solutions are considered next.' 

Pitch-S~nchronous Short-Window Analysis. If the 
analysis win ow ls shorter than a single pitch period 
(e.g. windowed dft with a fixed 2 to 4 ms Hamming 
window, or covariance linear prediction during the 
inferred closed phase of glottal period) one can 
estimate the natural damped response of the vocal 
tract transfer function in the absence of excitations 
{Atal and Hanauer, 1971). This type of model is 
attractive, but is not easy to implement in a 
practical speech analysis system in such a way as to 
avoid occasional gross errors. If the window is 
misplaced, some very irregular spectra can be 
generated. The greatest problem with this kind of 
model is finding the time of glottal closure. 
Misplacements are particularly probable for high 
pitches and in noise. Until such time as analyses of 
this type can be made to mimic human perception 
consistently, we will have reason to doubt the 
validity of the technique as a speech analysis tool. 
An alternative might be to attempt to model the vocal 
tract transfer function using linear prediction, while 
simultaneously modeling the glottal waveform by some 
other appropriate representation (Milenkovic, 1986). 

Auditory Hodelinr Synchrony Detection. Sachs et 
!!. ( 1982) have shown hat a measure of the tendency o1' 
neural firings to be synchronous with aspects of the 
basilar membrane displacement waveform has important 
advantages for speech processing. The synchrony 
measure is far less sensitive to changes in intensity 
of a vowel than are the average firing rate data. 
Synchrony data are also more immune to background 
noise and reverberation distortions (Allen, 1985), and 
they are not strongly affected by spectral tilt and 
formant amplitude variation (Srulovicz and Goldstein, 
198}) which agrees with data on phonetic perception 
(Klatt, 1982). Processing schemes based on 
synchronous responses are reviewed in Carlson and 
Granstr0111 (1982), Delgutte (1984) and Seneff (1984). 
Thus it is of interest to determine whether any of 
these measures of synchronous response contains a 
representation of F1, and if so, is the estimate 
biased toward the strongest harmonic? 

An answer comes directly from the Sachs et al. 
data, and from theoretical analysis of the wave?orms 
observed at the outputs of the low-frequency critical 
band filters in this type of model. Physiological 
data and cu=ent models agree that the auditory system 
resolves individual haI'l'llonics near F1 for stimuli such 
as our family of synthetic vowels. Nowhere in the 
neural pattern are there time intervals between 
firings that are the inverse of F1. Only intervals 
related to harmonics are present. There is 
essentially only a sine wave at the outputs of these 
simulated mechanical filters because of a kind of FM 
capture effect that makes the strongest harmonic 
dominate the synchrony response in any channel (Allen, 
1985). It will therefore be up to the central nervous 
system to figure out the first formant frequency from 
the relative proportions of fibers responding to each 
of the harmonics (and perhaps the relative phases or 
synchrony across channels). We can say little about 
the exietance or details of such a calculation at this 
point. 

S ctral Pattern uivalence Sets, One 
interes ng a erna ve s no usually considered 
in speech recognition devices is that the harmonic 
pattern in the synchrony response ie not processed 
centrally to recover an estimate of F1, but rather 
serves as a pattern vector in its raw form [Dick Lyon 
(personal communication) has expressed a similar 



vieWpoint], The CNS would then have to learn pattern 
equivalence sets across different fundamental 
frequencies, even though there may not be striking 
pattern similarity for equivalent vowel tokens. The 
total nl.DDber of patterns in such a system would be 
much larger than the largest current vector 
quantization pattern set, but the approach, given 
sufficient labeled training data (see e.g. Kopek, 1985 
for one of a number of possible implementation 
methods), could potentially overcome e number of other 
puzzling aspects of cross-speaker variability, es well 
as some of the distortions to a normal fonuant shape 
caused by (1) truncation effects (Fant and 
Ananthapadmanabha, 1982)t (2} other source-tract 
interactions (Fant, 1985)1 (3) breathy-normal-creelcy 
voice quality variations ~Fant et al., 1985), and (4) 
vowel nasalization (Hawkins and"""'S'£evens, 1985), These 
four factors can introduce additional errors in 
algorithms designed to measure formant frequencies 
based on the detection of spectral peaks, end 
forcefully call into question the desirability of 
simple-minded approaches to the extraction of the 
frequency of F1 from speech wavefozins (Bladon, 1982), 
although there can be no question of the importance of 
changes in F1 for vowel perception (Klatt, 1982), 
[This research was supported by ARPA.] 

REFERENC~ 

Allen, J. ( 1985) , "Cochlear Modeling," IEEE ASSP 
Hegazine, Jan,, 3-29, 

Assmann, P.F, and Nearey, T.M. (1983), "Perception of 
Height DU!erences in Vowels", J. Acoust. Soc. Am. 
74, S89 (A), 

AtiI', B.S. and Hanauer, S.L. (1971), "Speech Analysis 
and Synthesis by Linear Prediction of the Speech 
Wave," J, Acoust, Soc. Am, 50 J 637-655, 

Atal, B,S. and Schroeder, M.R. l1975), "Recent 
Advances in Predictive Coding: Applications to 
Speech Synthesis," in G. Fent (Ed.) 1ptech 
Communication, Uppsala, Sweden: Almqv s and 
ilksell, Vo!, I( 27-31, [Reprinted in Markel, J,D, 
and Gray, A.H. 1976), Linear Prediction of Speech, 
New York: Springer-Verlag, 18S.189,] 

Bladon, A, (1982), "Arguments against Formants in the 
Auditory Representation of Speech", in R. Carlson 
and B, Granstrom (Eds.), The Representation of 
sraech in the Perilheral Auditor~ System, Amsterdam: 
E sevler Blomedlca Press, 95-10 • 

Carlson, R,, Granstrom, B. and Fent, G. ( 1970), "Some 
Studies Concerning Perception of Isolated Vowels", 
S ech Transmission Laboratories Quarterl Pro ress 
an us etor - , oya ns ~ u e o 
Technology, S ockholiii, 19-35, 

Carlson, R., Fant, G., and Granstrom, B. (1975), 
"Two-Formant Models, Pitch, and Vowel Perception", 
in G, Fant and H.A.A. TethBIQ (Eds,), Auditory 
~lysis and Perception of Speech, New York: 
cadimlo Press, 55:Sz. 

Carlson, R. and Granstrom, B, (1982), "Towards an 
Auditory Sfectrograph," in R, Carlson and B, 
Granstrom Eds,), The ReSresentation of Speech in 
~e Peripheral Audltoryystem, Amsterdam: Elsevier 

omedlcaI. 
Chistovich, L.A. (1971), "Problems of Speech 

Perception," in L,L, Hammerich, R, Jakobson and E, 
~imer (Eds.), Form and Substance, Copenhagen: 

Chi ademisk Forlag, 83-93, 
(f;'79i)ch, L.A., Sheikin, R,L,, and Lublinskaja, V.V, 
D t , "Centers of Gravity and Spectral Peaks as 
5e ~~inan(ts of Vowel Quality", in B. Lindblom and 
a' an Eds.), Frontiers of S eech Communication 

D~earch, London: cs em c, - • 
~.in, CJ, and Gardner, R,B, 1985), "Which 
Formonics Contribute to the Estimation of First 
23~

2 
t Frequency?", Speech Communication 4, 

Del 35, 
N~~te, B. (1984), "Speech Coding in the Auditory 
J A e II: Processing Schemes !or Vowel-Like Sounds", 

Fa~oust. Soc, Am. 75, 879-886. 
Ac~Usti(19BS), "The Voice Source: Theory and 
(F.da ) C Modeling", in I.R. Titze and R.C. Scherer 
Aco~ti Vocal Fold Physiolo~y: Biomechanics, 

Fa~ cs and Phone tory Con rol, xx. 
~?~un• and Ananthapadmenabha, T.v. (1982), 
t..ba Q;~Rion and Superposition", Speech Transmission 
~2-3, Royal Institute oI Technology, 

--... ,.no1ni~17. 7 

Fant, G. and Liljencrants, J, (1962), "How to Define 
Formant Level: A Study of the Mathematical Model of 
Voiced Sounds," Speech Transmission Labs ~SR-2, 
Stockholm, Sweden: Royal Institute of Tee o!ogy, 
1-8. 

Fant, G., Lin, Q,G. and Gobl, C. (1985), "Notes on 
Glottal Flow Interaction, 11 Speech Transmission Labs 
QPSR 2-3, Royal Institute of Technology, Stockho!m, 
21-45. 

Finto£, K,, Lindblom, B. and Martony, J. (1962), 
"Measurements of Formant Level in Hunan Speech," 
Speech Transmission Labs QPSR-2, Stockholm, Sweden: 
Royal Institute of Technology, 9-17. 

Flanagan, J.L. (1955), "A Difference Limen for Vowel 
Formant Frequency", J, Acoust. Soc. Am. 27l 613-617. 

Floren, A. (1979), "Why Does [ae] Change to ao] when 
FO is Increased?", PERILUS I, Institute of 
Linguistics, Univ, Stockholm, 13-23. 

Fujisaki, H. and Kawashima, T. (1968), "The Roles of 
Pitch and Higher Formants in the Perception of 
Vowels," IEEE Trans. AU-16, 73-77, 

Itakura, F. ( 1975) , "Minimum Prediction Residual 
Principle Applied to Speech Recognition," IEEE Trans 
ASSP-23, 57-72, 

Hawkins, S. and Stevens, K.N. (1985), "Acoustic and 
Perceptual Correlates of the Non-Nasal/Nasal 
Distinction for Vowels," J. Acoust. Soc. Am. Tf, 
1560-1575-

Klatt, D .H. ( 1980), "Software for a Cascade/Parallel 
Formant Synthesizer," J. Acoust. Soc. Am. 67, 
971-995, 

Klatt, D,H, (1982), "Prediction of Perceived Phonetic 
Distance £rom Critical-Band Spectra: A First Step", 
Proc. ICASSP-82 1278-1281. 

Klett, D.R. (1985 ~, "The Perceptual Reality of a 
Formant Frequency," J. Acoust. Soc. Am. 78, S81 (A). 

Kopek, G.E. (1985), "Formant Tracking Using Hidden 
Markov Models," ICASSP-85, 1113-1116, 

Lindblom, B. (1962), "Accuracy and Limitations of 
Sonagraph Measurements," Proc. 4th Int, Congr, 
Phonetic Sci,, The Hague: Mouton, 188-202. 

Makhoul, J. (1975), "Spectral Linear Prediction: 
Properties and Applications," IEEE Trans ASSP-23 
283-296. 

Markel, J.D. (1972), "Digital Inverse Filtering: A 
New Tool for Formant Trajectory Estimation," IEEE 
Trans AU-20, 129-137, -­

Mermelstein, P. (1978), "Difference Limens for Formant 
Frequencies of Steady State and Consonant-Bound 
Vowels", J. Acoust, Soc. Am, 63, 572-580, 

Hilenkovic, P,, (1984), "Model Reference Glottal 
Inverse Filter of High FO Voice" , J. Acoust. Soc. 
Am. 76, S2 (A), 

Miller, R.L. (1953), "Auditory Tests with Synthetic 
Vowels," J, Acoust. Soc. Am, 25, 114-121, 

Plcmp, R. (1970), 11Tlm6re as a Multidimensional 
Attribute of Complex Tones," in R. Plomp and G. 
Smoorenburg (Eds.), Frequency Analtsis and 
~eriodicitY Detection In Hearlng,eiden: Sijthof£, 
97-411, 

Sachs, M.B., Young, E,D, and Miller, M.I. (1982}, 
"Encoding of Speech Features in the Auditory Nerve, 
in R, Carlson and B. Granstrom (Eds,), The 
Re resentation of S eech in the Peri heraI' Auditor 
ys em, s e am: sever orne ca , - • 

Senel'f, $, (1984), "A Synchrony Model for Auditory 
Processing of Speech", in J. Perkell and D.H. Klatt, 
(Eds.) Variabilit! end Invariance of Speech 
Processes, Hlllsda e, NJ: Erlbaurn, x~-xx, 

Schwartz, R,M. (1971), "Automatic Normalization for 
Recognition of Vowels of' All Speakers", S.B. Thesis, 
HIT, Cambridf>e, 

Slawson, A, W. t 1968} , "Vowel Quality and Musical 
Timbre as Functions of Spectrum Envelope and 
Fundamental Frequency", J, Acoust. Soc. Am. 43, 
67-101. 

Srulovicz, P. and Goldstein, J ,L, (1983), "A Central 
Spectrum Model: A Synthesis of Auditory Nerve 
Timing and Place Cues in Monaural Co111111unication 0£ 
Frequency Spectrum", J, Acoust. Soc. Am, 73, 
1266-1276, 

Syrdal, A.K, (1985), "Aspects of a Model of the 
Auditory Representation of American English Vowels", 
Speech Communication 4, 121-135, 

Traunmuller, H, {1982), "Perceptual Dimension of 
Openness in Vowels", J. Acoust, Soc. Am, 69, 
1465-1475, 




