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ABSTRACT 
An adaptive model of the fl.ring ~ates found in the 

auditory nervous system was conflgurell as a signal proces­
sor for the IBM speech recognition system. The sig­
nal proceSBor was teated on sentences drawn from office 
correspondence. Severa) experiments were done in low 
noise office environments using various microphones and 
different speakers. The system performance improved 
substantially compared to performance using a standard 
aignal processor. 

INTRODUCTION 
Speech recognition systems sample speech signals with 

a signal-processing front end. One school of thought sug­
gests that an auditory model is the 'ideal' signal proces­
sor for such applications, but performance figures avail­
able to date do not support the choice of auditory models 
over more standard signal analyses. This note reports 
the development and testing of a signal proceBSing algo­
rithm based on some aspects of the mammalian auditory 
system. 

COMMENTS ON THE IBM SPEECH RECOGNITION 
SYSTEM 

Information about the IBM speech recognition sys­
tem is widely avaliable {Bahl, Jelinek and Mercer, 1983; 
Nadas, et. al., 1981). The 5000-word vocabulary isolated 
word dictation system developed at IBM was designed 
from a communications theory view of speech recogni­
tion. It is usumed that a talker formulates a complete 
Engli■h sentence and transforms it into a noisy acoustic 
signal. This acoustic signal is then captured by an acous­
tic proce11or which produces a series of {vector quan­
tised) labels, discrete in both time and identity, from 
which a decision is made about the most probable sen­
tence given the acoustic input. The probabilistic im­
plementation of the system allows training of the linguis­
tic decoder, but the system performance depends on the 
reliability of the acoustic proce110r. 

The acoustic proceHor consists of two sub-systems. 
A 1ignal procesaor transforms the high-bandwidth 1peech 
signal into a vectorized time signal sampled at a modest 
rate, and a labeller quantizes the resultant vectors once 
each centisecond. The standard system u11e1 30 filter­
bank energies once each centisecond as its signal proces­
sor, and labels are assigned on a minimum Euclidian dis­
tance basis relative to prototypical vectors derived from 
training data. The signal processor reported here re­
places the filter bank with an auditory model. 

THE MODEL 
The auditory model consists of a frequency analysis 

followed by perceptually motiTI1ted scaling and nonlinear 
adaptation. The frequency analysis is performed by a 20-
band filter bank whose center frequencies and bandwidths 
correspond closely to those of auditory critical bands 
(Zwicker, Flottorp, and Stevena, 1957), roughly model-
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ing the aelecthity of the auditory syatem. A compre11ive 
power-law transformation is applied to the output from 
each filter, approximating loudnesa scaling {Stevens, 1955) 
and reducing the variability of the vector aignal as com­
pared with the original. The compressed signals form 
the inputs to a reservoir-type model of neural fl.rings 
(Schroeder and Hall, 1974) which relates stimulus inten­
sity to auditory-ne"e fl.ring rate, and which captures cer­
tain of the onset and offset characteristics of the neural 
response. 

SIGNAL ACQUISITION AND FILTERING 
Speech is captured using a far-field desk-moUDted 

microphone (PZM-6). The speech signal is bandpass 
filtered {180 Hs to 8 kHz), and is digitized. Power spectra 
are computed with an FFT. A critical band filter bank is 
approximated by summing the squared Fourier coefficients 
(intensity) in each of 20 non-overlapping banda spaced 
one critical band apart. 

The output of each filter is conTerted from inten­
aity to loudness level by mapping each output power 
to its equivalent baaed on the Fletcher-Munson curves 
{Fletcher and MUD10n, 1937) and an e1timate of the gain 
of the aco111tic system. A conversion to loudneBS is per­
formed by taking the third {in practice, the fourth) power 
of the output energy, and scaling such that 40 dB = 1 
sone. 

SHORT TERM ADAPTATION 
Following the lead of Schroeder and Hall {1974), short 

term adaptation is modeled by assuming the existence of 
a reservoir holding some amount (n) of neurotransmitter. 
The change in the amount of neurotransmitter available 
at time t is described by 

d.n/d.t = A-(So+ SH+ Dq)n{t). 

A, D, S0 and Sa are constants (estimated from psycho­
physical data), q is the square root or the loudness from 
each filter, and n is an internal state aHociated with each 
filter. This equation states that the change in neuro­
transmitter is equal to the replacement rate A minus the 
product of the amount of neurotransmitter available at 
that time with the sum of the spontaneous rate constant 
S0 , a decay constant SH, and a scale D times the square 
root of the input loudness. The fl.ring rate of that channel 
is expreSBed as 

I = (So + Dq)n(t). 

These transformations were incorporated into the teat 
system, and the output or the signal proceSBor was sub­
stituted. for the filter bank outputs of the previous stand­
ard process (Das, 1983). 

RESULTS 
Four talkers recorded the standard 100-sentence train~ 

ing corpus, and then recorded a SO-sentence teat cor­
pus at a later time. Signal processing was done twic~, 
once using the filter bank and a second time using the 
auditory model front end. The system was trained for 
each speaker using the standard forward-backward algo­
rithm. Results were as follows: 



Table 1. Error rate and decoding times for four 
1peaker1 using two separate front end proce11ea. FB = 
Filter Bank, AM = Auditory Model. 

Error rate /or Decoding time 
50 tenferl(!f!I (%) (min) 

Speaker FB AM FB AM 
JRC 6.3 4.1 77 48 
FRJ 7.9 4.4 75 38 
LRB 4.2 2.3 43 32 
PAF 6.6 4.0 99 61 

Average 6.3 3.9 74 45 

Error rates are expre11ed as the percentage of incor­
rect words in the entire test corpus, counting homophones 
or the correct word a1 incorrect. Decoding time is the 
time for the search through the possible sentences, and 
does not include signal proceasing time, labelling, cluster­
ing, training, and other overhead. Both erroa rates and 
decoding times are signUlcantly lower using the auditory 
model than using the standard Jilter bank. The over­
all error rate is reduced by 40 percent. Informal ex­
perimentation using diff'erent speakers and microphones 
confirmed the efficacy of the new front end. Several of 
these experiments are summarized in Table 2. 

Table 2. Decoding error rates for various speakers 
and two microphones. All experiments were trained on 
100 aentences of trainin~ data, and tested on 20 aentences 
of test data (299 words). The test text was the same in 
each experiment. ER = Error Rate (%) 

Speaker Microphone ER ER 
RLM lip 3.6 3.3 
RHR lip 7.0 4.6 
MAP lip 6.0 3.3 
RLM lavalier 22.0 2.6 
MAG lavalier 9.3 6.0 

The lip microphone wu a Sure SMS-10, mounted 
near the corner of the talker's lips, and the lavalier micro­
phone was a dynamic mike hung from a standard lavalier 
mount. The word error ratea decreased for every speaker, 
although the decrease for RLM using a lip mike is quite 
llnall. (Some of the errors in this corpus are •language 
model• erron, in that the word atrings are highly im­
probable giTen our particular 5000 word trigram model. 
Thua it i1 extremely difficult to demonatrate error ratea 
below 2 percent for this corpus and language model.) The 
~uction from 22 percent error to 2 percent error for 

½M's recordings using the laTalier microphone h quite 
~. but in a ditrerent series or experiments using 
oll)y long- term adaptation, the error rate on thil corpus :'8 ~ecreased to 5 percent; much or the decrease is due 

. Pin normali1ation. Decoding times were always less 
Utp lllg the new front end than with the previous signal 

rocesor. 

of Speakers MAG and PAF a.re both female, the rest 

111 the speakers in the experiments reported here are 
re::,e. No consistent dill'erence baa been noted in our 

&nition resulta between male and female apeakera. 
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SUMMARY 
A aimple auditory model was developed and tested as 

a aignal processing system for the IBM speech recognizer. 
It decreases the number of errors made by the system by 
approximately 40 percent in controlled tests. 
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