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INTRORUCTION

Speech recognition systems, however hetero-
geneous 1in their conceptions and’ schemes, share at
least one basic feature: the inclusion of a
vocoder-type front-end. While many of the early,
and some of the contemporary, systema adopted a
pragmatic design for their front-end filter bank,
thers were some efforts (e.g., Chistovich et al.,
1975; Searle et al., 1979) toward providing the
recognizer with an input stage that was modeled
after the human ear. The motivation for such a
design was the desire to optimize the recognition
process from the very first stage on. However, work
by auditory physiologists on auditory nerve
responses to apeech (Young and Sachs, 1979; Del-
gutte, 1980) signaled a welcome convergence of
interests by two groups of sacientliats on the prob-
tem of speech processing in the auditory system.
Morae recent work by several investigators, some of
which is included in the present symposium, has
been directed toward deaigning recognizer front-
ends that resembled the ear more-and-more closely,
and toward examining effects of model parameter
modifications on recognitlon performance.

Computational models of the auditory system
fall into two major classes, depending on whether
the calculations are performed in the time or in
the spectral domain. The advantage of time-domain
algorithms lies mainly in their speed, whereas
spectrally-based algorithms may more olosely
approximate the actual auwditory proeesses because
they are able to deal more directly with non-linear
filtering operations, The present model is spec-
tral in the sense that the filtering computations
are executed in the frequency domain.

DESCRIPTION OF THE MODEL

The present model has been bullt around the
physiologically-based and fine-tuned spectral model
proposed by Shannon (1979). That work stands out
{n that it computes the magnitude of peripheral
auditory activity across all frequency-apecific
channela, taking into account passive and active
cochlear filtering, compressive nonlinearity, and
suppression on both sides of a given channel. It
is, however, restricted to spectral processing.
The present modeling work uas undertaksn in an
alffort to see how time-varying signals can benefit
from spectral suppresslon, i.e., an enhancement of
the contrast between channels differing in thelr
activity level, as offered by the Shannon model.
The five stages of this model are connected in a
strict sequential order, 1.e., without feedback
loopa.

1. The Spectral Estimator Stage.
The physical contlinuum of frequaney was mapped

into 120 discrete channels between 50 and 10kHz
using the freguency-to-basilar membrane distance
transformation proposed by Greenwood {1961). The

purpose of the spectral eatimator was to provide
the inner ear simulator (that operated in the spec-
tral domain) with an estimate of the input

12

high tones.

magnitude that excited each channel. Thia input
magnitide had to reflact the duration of the
assumed equivalent impulse response of the
corresponding lnner-ear filter, i.e., it had to be
gated using a window whose length was & function of
the inner-ear fIlter width. Thus, a separate mag-
nitude estimate hed to be made for the narrow
actlve- and the wider passive filters of each chan-
nel (see Stage 3). We adopted a Hamming window with
a skew that emphasized more recent events. We arbi-
trarily assigned a 10-lz maximum frequency resolu-
tion to our 50-Hz channel and calculated the window
length for each channel assuming linear impulse
response and applying the Greenwood mapping. We
also limited the minimum window length te 2 ms, in
order to account for an indelible neural refrac-
toriness., The actual estimation was represented by
Direct Fourler Transform ccefficients of the win-
dowed 4input at the [lrequency corresponding to a
glven channel.

2. The Quter- and Middle-Ear Response Simulator.

To account for ear canal resonance and middle
aar attenuation, we 1included a spectral shaping
algorithm gradually falling off below 2.5 and above
4 kHz. The attenuation (in dB)} was a linear func-
tion of basilar membrane distance.

3. IEE Inner-ggg Spectral Response Simulator,

This astage, the actual Shannon model, is
characterized by E!g concurrently working filter
banks. One of the banks consists of passive,
broadly-tuned, linear filtera having a hhigh (30-dB
SPL) threshold. Filters in the other bank are
active, sharply tuned, low-threshold rilters with a
nonlinear compressive response that makes any
activity increment beyond 40 dB SPL negligible.
The active filters ara followed by a asub-stage
representing the suppression of high tones by low

tones, The output of this sub-stage is linearly
added, channel-by-channel, to that of the passive
filter bank. The output of the mixer 13 followed
by the sub-stage of suppression of low tones by
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In sum, the output of the Iinner-ear
represents the magnitude of the activity
in the auditory nerve across tonotopically organ-
ized channela. This output compresses a 120-dB
dynamic range in the input into a 20-to-25-dB range
in the output.

simtlator

y, The Auditory Nerve Temporal Response Simulator.
Single unit astudies have demonstrated that
there 1s a sizable temporal adaptatlion effect in
the responsa of single auditory nerve fibers {(Smith
and Zwislocki, 1975). This effect is characterized
by a strong burat of activity at the onset of the
atimulus followed by a gradual decrease, and by a
moment of sudden decrease of the activity at

stimulus offset, followed by a gradual recovery.
We used Smith'as theoretical expreasion for this |
temporal process, noting that the effect 1is

independent in each channel and that the adapted
output 1is affected only by the magnitude of the

present and the immediately Esgpeding output epoch,
rather

than by the input. Thus, the eifect is not
unlike that of a high-pass filter with a floor
(1.e., the sapontaneous activity level). It was
implemented in our model as simple exponential dif-
ferentiators having different time constants for
adaptation (18 ms) and recovery (36 ms). This stage
enhances temporal contrasts in the input.

5. The Temporal Integrator Stage.

auditory psychophysical data, howeverbetdggigg
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fluctuations, for example, clearly sapeak for the
existence of a low-pass proceas, i.e., of a leaky
integrator. We implemented this stage as an
exponential integrator placed on each channel at
the output of the temporal adaptation stage. The
time constant we chose was short (1.5 ms) -- in
agreement with other workers (Penner, 1978). We
also noted that, because thls integrator operates
on. the compressed output rather than on the input,
a single, short time constant must be capable of
accounting for both temporal integration at thres-
hold and envelope discrimination at suprathreshold
javels.

EXAMPLES :

We have completed several tests with simple,
easily definable input signals, in order to obtain
an optimized set of model parameters. The output of
two 3aimple signals, a 100-dB SPL, 2-ms click and a
50-dB SPL 50-ms Gaussian white nolse burst, are
shown in Fig. 1. We have also examined the
pahavior of 2 model in reaponse to natural speech
sounds. One  example, thz  beginning of the
phonetically-balanced sentence "The goose was
prought straight from the old market™ is shown as a
gpectrogram in Fig. 2 and as a "neurogram", or
time-frequency channal model output, in Fig. 3. 1In
addition, we have also examined a large number of
pnatural CV utterances, in an attempt to search for
invariant cues (not shown here)}.

SPEECH RECOGNITION TESTS

In order to see whether the model could embody
an improved front-end to a cepstrum-based recog-
nizer, we conducted a serles of experlaents on a
natural sentence data base, Recognition performance
with the raw output of the model as input to the
recognizer was signifiecantly poorer than when the
front-end was a simple vocoder. Muech of the perfor-
mance degradation could be athrlbuted to the pres-
ence of individual low harmonies that dominated
the model output. It seems, therefore, that some
type of feature detection would be necessary before
the model could become a useful tool in automatlc
speach recognition.
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FIGURE LEGENDS

1. a: 3-D pleture of the model's response to a 2-m3
cllcik presented at 100 dB SPL. Frame size: .25 m3.
Only the first 10 ms of the responae are shown. b:
3-D picture of the model's response to a 50-ms3
burst of whita noise presented at 50 dB SPL. Frame
stza: 2 ma. Only the first 80 ms of the response
are shown.

2. Conventional spectrogram of the utterance ™The
goose wa(a)..." by a male talker.

3. Model ocutput (™neuragram") of the same utter-
ance. Diffarence between the darkest and the light-
est parts of the output 1= 13 d3. Frame size: 2
ms.
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