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The decoding o/ speech into phonemes for large 11ocab­
ular11 speech recognition is made more reliable by restrict­
ing phoneme sequences to lhose which compose valid sylla­
bles. To appl11 this reatriction when decoding a --.,equence of 
phonemes, we uae a aytlable network representing the valid 
a11llables in Webater '11 7th Collegiate dictionary. 

Since ma;'or allophonic variants of a phoneme are de­
termined b11 the phoneme's position within the 1111llablc ( c.r,., 
pre vocalic vs. postvocalic /r /), the s11llable network can be 
uaed to represent allophonit variation by emplouing di11tinct 
allophone models of a phoneme in different positions within 
the network. A preliminary experiment using the s11llable 
network in large vocabular11 recognition to select appropriate 
Markov models for allophones shows promising resulta. 

LO Introduction 

In this paper, we describe the use of a syllable network 
when decoding speech as a sequence of phonemes in large vo­
cabulary speech recognition. Phonemic decoding of speech 
without any restriction on "VB.lid phoneme sequences leads to 
a large number of hypotheses which do not obey the phono­
tactic constraints of the language. We have used a syllabic 
network to restrict the possible phoneme sequences to corre­
spond to sequences of valid syllabics. The syllabic network 
also serves to control the choice of positional allophones. Al­
lophonic variation is represented by using different Markov 
sources (Bahl ct al., 1983} for a given phoneme depending 
upon its position within the syllabic network. 

2,0 Syllable Network 

A syllabic network for English which generates all and 
only the 8157 English syllables is necessarily complex. Such 
a network can be obtained by first constructing a tree of 
all possible syllables and then merging the tree from both 
ends. Simpler networks overgeneratc the English syllabary. 
We have constructed a syllable network of intermediate com• 
plcxity to achieve a compromise between network complex• 
ity and ovcrgencration. 

The syllabic onset, nucleus, and coda arc the subunits 
of the syllabic within which the tightest phonotactic con• 
straints obtain (Selkirk, 1982). Thus, our syllable network 
includes separate subnetworks for each of these three sub· 
units. The syllabic network generates phoneme sequences 
of the form 

(01 (02(0:i)))N(C1 (C2(C3(C4)))) 

where Oi stands for a consonant in the syllabic onset, N for 
the vowel in the syllabic nucleus, and C; for a consonant in 
the syllabic coda. The parentheses imply that the segment 

• Alao with INRS-Telecommunications, University of Quebec. 

45 

is optional. Only the nucleus is compulsory in the syllable. 
The subnetwork for the onset allows a maximum of three 
consonants, while that for the coda allows a maximum of 
four. 

The syllable network was created based on the 60,000 
phonemic transcriptions contained in Webster's 7th Colle­
giate dictionary (henceforth, the dictionary). Starting with 
a rudimentary network, branches were added iteratively to 
account for syllables in the dictionary not generated by the 
network. The resulting network has 76 nodes and over 300 
branches. 

The phonotactic constraints can be tightened further by 
using a separate syllable network for each syllable position 
within the word. The maximum number of syllables for any 
word in the dictionary is 10 (except for one word which was 
excluded). The number of valid syllables decreases with in­
creasing syllabic position number within the word (Table 1). 
Note that the set of syllables which occur in the first position 
includes all syllables which can occur in any position. 

Syllable position in word Number of distinct syllables 

1st 8157 

2nd 6181 

3rd 3031 

4th 1718 

5th 724 

6th 306 

7th 110 

8th 36 

9th 12 

10th 2 

Table 1. Number of distinct syllables 
possible at each position within the 
English word. 

3.0 Use of the Syllable Network to Select 
Allophones 

i 

Allophonic variants of a phoneme arc often determined 
by the phoneme's position within the syllabic (e.g., prevo­
calic, postvocalic, intracluster). For example, the phonemes 
/1 r w / differ significantly in their prcvocalic and postvocalic 
realizations. First and second formant trajectories move up• 
ward in most contexts when these pl1oncmes appear in pre• 
vocalic position, while the formant trajectories move down­
ward when these phonemes appear in postvocalic position. 
By using separate Markov sources for allophones which dif~ 
fer in position, we can account for such variation. 

In some cases, allophones are conditioned by a more de­
tailed positional specification. For example, the allophones 
of the nasal consonants which occur in the syllable-initial 
clusters /sm/ and /sn/ arc realized as partially devoiced 
with a very short na.o;al murmur. Also, devoiced allophones 
of the phonemes /w j r 1/ occur when preceded by a voice­
less fricative as in Bwitch, few, three, and Blide. Allophones 
which are difficult to account for with the syllabic network 



arc those which depend on larger contexts than the syllable. 
For example, [ r], the flapped allophone of /t/, occurs ambi­
syllabically after a stressed and before an unstressed vowel 
as in butter, pronounced [bAr.t]. ' 

t.O Preliminary Recognition Results 

In a series of speaker-dependent, isolated word recogni­
tion experiments using the syllable network, the unknown 
word is decoded as a sequence of syllables, where each syl­
labic corresponds to a path through the syllable network. 
Each of the syllable network's transitions is mapped to a 
Markov source allophone model. In the experiments we 
report, we vary this mapping. First, all occurrences of a 
phoneme are represented by a single Markov source. Then, 
separate Markov sources arc U5cd to represent a given pho­
neme occurring in the syllabic onset and in the syllabic coda. 
We use statistical decoding to compute between 200 and 600 
most likely syllabic sequences corresponding to words in the 
60,000-word dictionary. Since our system docs not employ a 
language model, all 00,000 words arc assigned equal a priori 
probability. Thus, the perplexity of this ta.sit is 60,000. 

The training set consists of 800 word tokens from arbi­
trary texts, 60 distinct words chosen to contain consonant 
clusters, and 100 distinct eve words, where C stands for a 
stop or a liquid, i.e., one of the consonants /p t k b d g r 1/. 

Two test sets were used (sec Appendices). The first, 
denoted Chr1111fr.r, is a 99-word automobile advertisement. 
The second is a 100-word list of eve words where C is a 
stop or a liquid, having no words in common with the CVC 
training list. 59% of the words in the Chrysler test set and 
0% of the words in the CVC test set are represented in the 
vocabulary of the training set. Training and test sets arc 
disjunct. 

Two experimental conditions arc compared: 

(1) One Markov source (one allophone) for each of the 
30 phonemes in the syllable network. 

(2) Stops and liquids arc represented by two llllophoncs 
each. One Markov source is used in the syllabic on­
set, the other in the syllabic coda. Other phonemes 
arc represented by one allophone each. 

The recognition results in Table 2 show the percent cor­
rect recognition in the top n phonetic transcriptions, where 
n is either 1, 5, 20, or 100. Use of distinct allophones for 
the stops and liquids a.s they occur in the syllabic onset and 
coda improves the performance only for the eve test set. 

test set condition n = l n = S n ,,. 20 n =- 100 

Chrysler 
(1) 60% 81% 91% 94% 
(2) 62% 81% 80% 04% 

eve (1) 15% 36% 54% 67% 
(2) 21% 56% 77% 88% 

Tab]e 2. Percent correct recognition in top n 
choices. 
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5.0 Conclusions 

The syllable network provides a convenient framework 
for the selection of different allophonic models depending 
upon a phoneme's position within the syllable. Separate 
allophones of stops and liquids for the syllabic onset and 
coda lead to a significant improvement in recognition of eve words. The fact that no significant improvement is 
observed in recognition of arbitrary text suggests that a 
more general representation of allophonic variation in the 
multisyllabic environment 11.nd more complete training ap­
propriate to that environment arc necessary. 
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Appendix: Chrysler Test Set 

begin paragraph here is the confidence of front h11phen wheel 
drive comma the 11ecurit11 of advanced electronics and the 
quiel comma smooth ride vou ezpect in a fine luxurv car 
period begin paragraph and here arc tlit /uzuriea vou de­
mand period automatic transmis1ion comma power window11 
comma power ster:ring comma power brakes romma power re­
mote mirrors and individual reclining aeats atandard period 
begin paragraph and fina/111 comma here is the new technol­
Of/11 of turbo-power period more power to moue 11ou ptriod to 
accelerate period to pcuis period lo cruise in serene comfort 
e/lipsi11 vet with remarkable fuel cfficienc11 period. 

Appendix: CVC Test Set 

but could back write put god book rut dtad pull bed role top 
bad deal date doubt cart look rork lip tool lack pair tear cup 
pale load pour dare dear kick tip leap cop lobe rob rub cab 
tub gale gag tag pig log bog rogue gab goal guilt ball lower bit 
roll bird beat cool tall rool coat rout luck core cal rare tale 
Paul coal pike beer pot peer tail cape robe lab goad dug gape 
tug dip rot rat cot cod tight tide tuek tack lull roar lure rope 
ripe reap ri11 pile tile curd pearl. 




