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' Abstract. This is the first of e set of papers 
from the MIT Speech Communication Group expressing 
conflicting viewpoints as to the nature of the speech 
perception process and the best way to approach the 
problem of speech recognition by machine. In this 
paper, it is argued that all models employing phonetic 
feature detectors (whose purpose is to make phonetic 
decisions so as to reduce the information content of 
the input representation prior to lexical search) are 
suboptimal in a performance sense. Such models are 
usually incompletely specified, and they do not 
confront certain theoretical problems that are 
discussed here. It is suggested that the LAFS model 
of precompiled acoustic expectations for familiar 
words (Klatt, 1979) has theoretically superior 
characteristics. However, aspects of the Stevens 
model described in the next paper (in particular, 
relational invariance at the acoustic feature detector 
level) are an attractive candidate for the front-end 
processor of a next-generation LAFS strategy. 

What does it mean when someone says "I believe 
that phonetic features play an essential role in 
speech perception?" Can this philosophical position 
be translated into a practical strategy for speech 
recofnition? The purpose of the present paper is to 
spec fy what must be present if a theory claims to be 
an instance of a phonetic feature baaed perceptual 
strategy, Along the way, we will point out some of 
the problems facing anyone wishing to build a speech 
recognition device having these characteristics. The 
paper is, in part, a challenge to those who embrace 
the phonetic feature basis ot perception. 

A literal translation (by me) of the phonetic 
feature concepts implicit in Jakobson, Fant and Halle 
(1963) or Chomsky and Halle (1968) to the domain of 
perception results in the procedure outlined in the 
block diagram of Figure 1. Similar models have been 
discussed by Studdert-Kennedy (1974) and Pisoni and 
Luce (1986). 
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Figure 1. Block diagram of a "literal" phonetic 
feature detector model of speech perception. 

Peripheral Processing. I assume that the peripheral 
processing stage provides at least two representations 
of input speech waveforms: (1) an average-firing-rate 
representation of the short-time apectrum (Goldhor, 
1986), and (2) some sort of synchrony spectrum (Sacha 
et al., 1982; Allen, 1985). Details are not important 
l:ome issues at hand, although there ls some hope 
that a properly designed simulation of peripheral 
processing, including critical bands, masking, 
adaptation, synchrony to formant frequencies, etc,, 
will make the task of later modules easier by 
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enhancing invariant acoustic characteristics of 
phonetic features and suppressing irrelevant 
variability. 

Acoustic Property Detectors. A set of acoustic 
property detectora transform this spectral input 
representation into time functions that characterize 
the degree to which certain properties are present in 
the input at a given instant of time. These property 
detectors are assumed to differ from the raw input 
apectra in that they compute relational attributes of 
the signal which tend to be more invariant and 
"quantal" (Stevens, 1972) across phonetic contexts and 
across speakers than are the raw spectra. The 
acoustic property detectors are further assumed to 
differ from phonetic feature detectors (the next 
stage) in that they compute relatively simple general 
auditory properties which are useful for processing 
other signals aa well as speech. Examples of possible 
auditory features are onset detectors, spectral change 
detectors, spectral peak detectors, formant frequency 
detectors, formant motion detectors, 
presence-of-voicing detectors, fundamental frequency 
detectors, nasal-formant detectors, etc. 

Phonetic Feature Detectors, A phonetic feature 
detector has the task of examining an input set of 
auditory property values over a chunk of time, and 
making linguistic decisions that are 
language-specific. Of course aspects of the speech 
production/perception process constrain these 
decisions to be similar across languages (Stevens, 
1972), A phonetic feature detector may make a 
relatively simple decision based on input from a 
single acoustic property detector, or, more typically, 
a feature detector combines infonnation fr0111 several 
different auditory property detectors. 

The decision of a phonetic feature detector is, 
in principle, binary -- reflecting the presence or 
absence of the feature at that instant of time. 
However, in a speech recognition context, it may be 
better to think of the detector output as expressing 
the probabilitt of the presence of a particular 
feature at tha time, given the acoustic evidence to 
date. In this way, one can represent real ambiguity 
and possibly recover later from inevitable errors. 
The output probability values may spend most of the 
time around zero and one, as a linguist would expect 
when the acoustic data are clear, but this is 
certainly not possible in the presence of background 
noise and other factors that influence articulatory 
performance. Experience with speech understanding 
systems has shown the undesirability of forcing an 
early decision when, in fact, representations 
incorporating uncertainty often permit correct 
resolution in later decision stages (Klatt, 1977). 
Even if phonetic feature outputs are probabilities, 
there ls still a considerable reduction of information 
taking place at thie stage; only about 20 or so 
feature "time functions" are available to represent 
phonetic events • 

Segmental Analysis. Up to this point, the object of 
the computations has been to describe via phonetic 
features what is actually present in the acoustic 
signal, or equivalently, what articulatory gestures 
were used to generate the observed acoustic data. The 
segmental analysis stage must temporally "align the 
columns" of the eet of parallel feature detector 
outputs so as to produce what can be interpreted as a 
sequence of discrete segments (the presumed form of 
the lexical entries). In the spirit of creating as 
much parsimony with current linguistic for111alism as 
possible, I have assumed that the segmental 
representation is basically a feature matrix (Chomsky 
and Halle, 1968), but it can become a lattice of 
alternative matrices where necessary to describe 
segmentation ambiguity. One might also argue for 
additional levels of phonological representation to 
delimit syllables, onsets and rhymes, etc. (Halle and 
Vergnaud, 1980), or to group features into tiers that 
need not be temporally perfectly aligned (Clements, 
1985; Stevens, these proceedings). 

Entries in the matrix are, again, probabilities, 
but this time they indicate the likely 
presence/ abaence of 111ore abstract "phonological 11 

features -- reflecting the speaker's underlying 



intentions (to the extent that it is possible to infer 
such intentions from the acoustic data), For example, 
iiven evidence for a nasalized vowel followed by a 
Lt], but with little or no evidence for a nasal murmur 
before or after the vowel, this stage of the analysis 
would postulate a nasal segment between the vowel and 
the [tJ, assign the nasality to it, and_deduce the 
probable phonetic quality of the preceding vowel if it 
had not been nasalized. 

Lexical Access. The lexical access module accepts as 
Input the segment matrix (and perhaps prosodic 
information and syntactic/semantic expectations) in 
order to seek candidate lexical items, The mechanics 
of the matching process requires the development of 
sophisticated scoring strategies to penalize 
mismatches and deal with missing and extra segments. 
In general, word boundary locations are not known 'for 
certain, so that lexical probes may be required at 
many different potential starting points in an unknown 
sentence. 

EXAMPLE 

A schematic spectrogram of the utterance [ads] is 
shown in Figure 2, The spectrogram illustrates 
several cues that interact to indicate whether the 
plosive is voiced or voiceless. 
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Figure 2. Six acoustic cues to voicing for plosives. 

While six cues are identified in the figure (and 
Lisker, 1978, has catalogued 16 potential cues), it is 
by no means clear that the cues correspond to the 
outputs of six quasi-independent acoustic feature 
detectors. Proper analysis of this and other phonetic 
situations may reveal the existence of integrated 
detectors that combine at an auditory level some of 
the cues to voicing listed in the figure. Even so, 
the task of the voicing feature detector is s complex 
one, due to the difficulties enumerated below: 

(1) When to Activate a Detector? Acoustic 
property detectors produce output time functions to 
indicate e.g. the location in time of an onset or the 
location in frequency of an energy concentration. 
However, these detectors do not make any decisions -­
it ia up to the phonetic feature detector to find the 
onset corresponding to the burst of a plosive, and the 
onset corresponding to voicing onset time so as to 
measure VOT, While these events are usually clear to 
the eye when inspecting a spectrogram, the viewer 
employs a great deal of speech-specific knowledge to 
reject visual onsets that don't look globally like 
plosive-vowel sequences, Programming a computer to 
behave reliably in this way has proven to be extremely 
difficult {see e.g. Delgutte, 1986), How much general 
speech knowledge must be employed by the voicing 
feature detector when trying to decide whether it is 
confronted by a plosive release? 

(2) Feature Indeeendence. If one task is to 
measure voice onset time by determining burst onset 
followed by voicing onset, the detector should 
pro6ably be willing to accept a weaker burst as an 
onset ir the plosive were labial than if it were not. 
Similarly, the VOT boundary between voiced and 
voiceless is probably somewhat shorter for labials. 
Ie the voicing feature detector (a) permitted to know 
the place decision, (b) permitted to compute 
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information required for an optimum voicing decision, 
or (c) forced to make an independent judgement of 
degree of voicing which will be corrected by the next 
level that has available all feature outputs? 

(3) Time FWtctions vs. Event Sequences. The 
voicing decision Involves multiple cues that occur at 
different times. The temporal location of release 
relative to closure can vary, making it hard to use 
fixed measurement points in combining information over 
time, Are each of the cues to voicing beat thought of 
as time fWlctions, as assumed thus far, or as events 
that occur in sequence and must be interpreted by a 
second decision level (what is the representation of 
knowled6e and decision flow in a feature detector)? 

(4J Cue Combination Rules. Ultimately, the 
voicing feature must combine all the available 
evidence into a single voicing decision ( probability) 
that is the best decision possible at that given 
instant of time. Is the decision framework basically 
articulatory and Bayesian (compute the conditional 
probability of obtaining the observed data assuming 
the canonical articulatory pattern for a voiced 
plosive, and compare this with the conditional 
probability of obtaining the observed data assuming 
the articulatory pattern for a voiceless plosive)? 
How can the extremely rich set of a l temative patterns 
of acoustic cues signalling voicing be 
prograrmned/learned in any practical model? 

(5) Intended vs. Actual Articulations. Do the 
vowel feature detector outputs represent vowel 
qualities/articulations actually observed, or do they 
try to estimate underlying targets by discounting 
coarticulatory influences of adjacent segments? 

(6) Phonetic Features or Seftents. Are phonetic 
features identical In acoustic a rlbutes for 
different segments? If not, would it be better to 
view perception as the problem of identifying segments 
from the temporal variations in acoustic property 
detector outputs? For example, [t,d,n] share a common 
place of articulation, and may share a single unifying 
integrated property, but it is unlikely that they 
share identical manifestations of place of 
articulation. Is there an inherent advanta~e to 
features, or is the advantage philosophical/genetic? 

An alternative to the feature matrix as a 
segmental representation might be a column in which 
all possible phonetic segments are listed with an 
associated probability. Suppose we observe a voice 
onset time that is more compatible with [p,g) than 
with either [b] or [k]. It would be easy to specify 
highest probability for [p) and (g] within a segmental 
representation -- and some perceptual data suggests 
that this is appropriate (Oden and Massaro, 1978) -­
but it is impossible to selectively favor this pair 
using only feature probabilities. 

(7) Bread vs. Narrow Phonetic Re resentations. 
An intervoca c poss resse p s wea y asp ra ed, 
and so is somewhat ambiguous in voicing, The phonetic 
feature system, as described, does not permit 
specifying gradations of VOT, so this plosive will 
only be represented as having a slightly greater than 
chance probabilitr of being voiceless. A word-initial 
hi~hly aspirated p] will generate more confident 
[pJ-ness probabilities, end thus will better fit all 
lexical [p]'s, including those in poststressed 
position. This, and many other examples suggest that 
it is not a good idea to try to recover phonol ogical 
segments (phonemes) prior to probing the lexicon 
because narrow phonetic information is useful in 
determining likely word-boundary locations, syllable 
structure and stress patterns (Church, 1986), To the 
extent that the segmental feature matrix produced by 
this model is somewhat inaccurate, or underspecified, 
or broadly phonetic, it is sub-optimal for lexical 
search. 

DISCUSSION 

We have identified a number of unsolved design 
issues which help to explain why phonetic feature 
extraction is not currently a popular method of 
automatic speech recognition. Phonetic features are 
hard to extract from s~oustic date, and hard to 
convert to a representation suitable for probing the 
lexicon. A compelling l i st of theoretical and 
experimental reasons for believing that segments are 
perceptually real has been compiled by Pisoni and Luce 



(1986); perhaps new methods of segment recognition 
and/or phonetic feature extraction can be devised to 
overcome the problems we have listed. Alternatively, 
the view that phonetic features are an essential 
aspect of language need not imply a belief in phonetic 
feature detectors for perception. 

The Jakobson, Fant and Halle (1963) view of 
phonetics is that a very small number of universal 
binary distinctive features serves to describe 
language, both at the phonological and phonetic 
levels. Such a view, if adopted as a perceptual 
model, implies that the output of the phonetic feature 
detector stage is a rather broad phonetic 
characterization. The undesirability of a broad 
transcription became evident when we considered 
lexical search. A more narrow phonetic representation 
must be devised, perhaps by adding to the .feature 
inventory. Also, feature outputs might take on 
continuous values representing strength of a cue 
rather than probability, in which case lexical 
representations can quantify expected position along a 
continuum of feature strength for each segment. 
However, in our view, phonetic feature detectors must 
make decisions and reduce the information content of 
the representation, or they become continuous 
recodings of the input which are no different in kind 
from those proposed for other non-featural 
non-phonetic models. 

Relation to Perce trons and S readin Activation 
es, ere as ong een an n eres n s mu sting 

tl'ie"p'resumed computational capabilities of neurons and 
neural assemblies (Hebb, 1949; Rosenblatt, 1962). 
One such model that captures the spirit of the 
phonetic feature detector model described in this 
~aper has been proposed by Elman and McClelland 
(1986). Much is now known about the 
learnin~/generalization capabilities of this class of 
models (Minsky and Papert, 1969), and the implications 
are not entirely encouraging. I have described 
elsewhere specific problems with the Elman/McClelland 
implementation (Klatt, 1986b). 

Relation to the Motor Theory. The motor theory of 
speech perception (Liberman et al., 1967; Liberman and 
Mattingly, 1986) advocates a transformation from 
acoustic data to articulatory representations. The 
claim is that segmental encodedness due to 
coarticulation, complex cue trading relationships, and 
other mysteries of perception can be better explained 
in articulatory terms. However, even if we grant that 
the motor theory proponents are correct and the 
outputs of the acoustic feature detector stage should 
be transformed into a model of the current 
hypothesized ahape of an ideal vocal tract (Atal, 
1975), such a transformation does not really solve 
most of the practical problems inherent in a phonetic 
feature model. Even ignoring the difficulty of 
determining a unique articulatory sha~e or trajectory 
from acoustic data (Atal et al,, 1978), practical 
problems still center on making feature decisions and 
aligning features in order to represent the speaker's 
intended phonological segments, and then matching this 
highly reduced representation to lexical expectations, 
Furthermore, the rules needed to infer underlying 
features from articulatory shapes and dynamics may not 
be significantly easier to state algorithmically given 
present computer programming languages and pattern 
matching concepts. 

Relation to Analtsis by Synthesis, The model we have 
discussed mlghte considered aa simply the initial 
stage of a more elaborate model of speech perception 
in which an important second module verifies lexical 
hypotheses by returning to the raw acoustic data to 
seek detailed confirmation/rejection. This 
"analysis-by-synthesis" IQOdel (see Halle and Stevens, 
1962, the appendix in Klatt, 1979, Zue, 1985, or the 
companion Zue paper in these proceedings for a more 
detailed description) is in principle capable of 
overcoming errors and ambiguity in the initial 
hypothesization of words, and thus might tolerate 
imperfections and some featursl indecisions. 

Thus one way to simplify the task of the phonetic 
feature detector stage might be to suppose that these 
detectors only compute fW'lotions reflecting invariant 
attributes of features. More complex cue-trading 
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relationships and context dependencies would then be 
handled at a later "analysis-by-synthesis" stage, The 
idea is that invariance-based features can be made to 
~erform with an accuracy of perhaps 85% correct 
(Stevena and Blumstein, 1978; Kewley-Port, 1983), and 
this may be sufficient to access the lexicon. Shipman 
and Zue (1982) have shown that a broad-class acoustic 
classifier which avoids difficult decisions, such as 
place of articulation, can nevertheless significantly 
narrow the search among a large set of candidate 
isolated words. However, simulations of the 
continuous speech situation (Klatt and Stevens, 1973) 
BUggest that the analysis-by-synthesis model is 
rapidly overwhelmed with lexical candidates when the 
phonetic matrix is underspecified, especially when the 
beginning time of a word is uncertain or there is an 
error such that no word matches perfectly. 

The synthesis part of analysis by synthesis is 
intended to take advantage of the observation that 
synthesis rules are easier to state and less subject 
to ambiguous interpretation than correaponding 
(inverse) speech analysis rules. But synthesis is a 
fairly costly computational strategy, and is not a 
.(>Srticularly plausible model of human perception 
(Klatt, 1979). An alternative, described next, is to 
precompute a knowledge representation equivalent to 
the synthesis stage of analysis by synthesis, end use 
it in direct analysis. 

Relation to LAFS: Precom iled Acoustic Ex ectations , 
a ems ve m e o percep on, ex ca ccesa 

From ~ectra" (Klatt, 1979; 1986a) proposes tliat the 
expected spectral patterns for words and for 
cross-word-boundary recodings are stored in a very 
large decoding network. Perception consists of 
finding the beet match between the input spectral 
representation and paths through the network. No 
phonetic feature or segmental decisions ere made as 
long as the system is dealing with familiar words. 

For purposes of speech recognition, the advantage 
of a phonetic feature detector model over LAFS is in 
the possibility that relational invariants computed by 
acoustic detectors may go a long way toward combatting 
cross-speaker variability and discovering invariance. 
The disadvantages of a feature-baaed strategy are that 
it makes decisions too early (before lexical access), 
it has difficulty defining a representation that is 
appropriate for lexical access, and it requires expert 
specification of extremely complex decoding strategies 
in order perform well. 

The advantages of the LAFS model are: (1) there 
is no assumption of phonetic feature invariance across 
segment types and across phonetic environment, so all 
phonetic sequence possibilities can be effectively 
treated as separate patterns if desired, (2) phonetics 
expertise is required only to set up the structure of 
the network, not to train/optimize it, and (3) no 
decisions are made too early since the first decision 
is a lexical one. The practical disadvantages of LAFS 
are that there may simply be too many cases to 
enumerate if all possible phonetic and lexical 
contexts are treated separately, and there is no 
well-motivated way to handle variability within and 
across speakers, except by defining alternative 
templates. 

CONCLUSION 

The initial stages of the phonetic feature 
detector model described in Figure 1 have the 
attraction of potentially taking advantage of (1) 
improved spectral representations of speech and (2) 
relational invariances that appear in the outputs of 
acoustic feature detectors. Succeeding stages of the 
model are far less attractive because it is unclear 
how to overcome the seven specific problems listed in 
the Example section. In preparing this review paper, 
I have come to the conclusion that there could be 
advantages to combining the attractive aspects of the 
initial stages of Figure 1 with the power of the LAFS 
model of lexical hypothesis formation, The result may 
be a LAFS model more capable of dealing with 
within-speaker and cross-speaker variability. 
Unfortunately, much basic research remains before an 
optimal acoustic-feature-based front end can be 
specified end interfaced with LAFS, [Research 
supported by NIH,] 
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