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1 Introduction
The miniaturization of sensors coupled with advancements
in Machine Learning (ML) have facilitated the achievement
of portable health monitoring. In particular, in-ear wear-
able devices, or hearables, have gained popularity in recent
years. This is because within the stable position of the oc-
cluded earcanal, hearables can capture various events using
only an in-ear microphone [1]. The detection and classifi-
cation of in-ear biosignals such as heartbeats and respiration
have already been achieved with conventional signal process-
ing techniques [2]. However, these conventional techniques
rely on peak detection and are affected by movement arti-
facts. ML methods that are popular for their rapid compu-
tation and comprehensive learning capacity may be more ro-
bust to such challenging conditions. The goal of this work
is to collect an open-access database of various in-ear micro-
phone signals and to develop advanced techniques to detect
and classify breathing and heart rate in various acoustically
challenging conditions.

2 Background
2.1 Previous Work
Health monitoring methods that use acoustic data to measure
physiological signals using traditional digital signal process-
ing (DSP) have already been proposed in the literature. For
instance, peak extraction and envelope detection to measure
respiration and heart rate from in-ear recordings were pro-
posed in [2]. Authors in [3], used heart sounds recorded from
the neck to measure respiration and heart rate using Contin-
uous Wavelet Transform (CWT). In general, DSP methods
work well with data captured in controlled environments but
are often not robust to real-world disturbances such as noise
and movement.

Recently, ML algorithms have been used for various
tasks in detection and classification of audio events. Au-
thors in [4], extracted Mel Frequency Cepstral Coefficients
(MFCCs) and Spectrogram Image Features (SIF) as features
and employed ML algorithms such as Support Vector Ma-
chine (SVM), Hidden Markov Models (HMM) and Deep
Learning (DL) models like Convolutional Neural Networks
(CNNs) to detect sound events in noise-corrupted real-world
data. Similarly, in [5], an approach was proposed to de-
tect non-speech audio events using SVM, HMM and Multi
Layer Perceptron (MLP). The features which were extracted
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by the authors to train the aforementioned algorithms con-
sisted of MFCCs, Zero Crossing Rate (ZCR), fundamental
frequency, as well as brightness and bandwidth from the ex-
tracted spectrogram. Bag-of-Audio-Words (BoAW) or Bag-
of-Feature techniques which are inspired by Bag-of-Words to
be used for audio event detection were utilized by researchers
in [6,7] and [1]. Also, as an efficient ML algorithm to classify
non-verbal events in audio data, Gaussian Mixture Models
(GMMs) were used in [8], [9], and [10].

Currently, there exists no algorithm capable of detecting
and classifying various physiological and non-verbal events
captured with an in-ear microphone. In addition, there is a
need for a large database of the relevant in-ear microphone
signals captured in the various realistic use cases of a hear-
able. This work will result in a ML algorithm to detect and
classify heartbeats and respiration as well as an open-access
database of various non-verbal and physiological signals cap-
tured with different sensors, including an in-ear microphone.

Figure 1: An illustration of the spectrogram of normal nose breath-
ing for one subject is provided, demonstrating that both respiration
and heart beat can be captured with the in-ear microphone.

3 Methodology
3.1 Database Creation
To explore the potential of ML for the detection and clas-
sification of physiological signals captured from inside the
earcanal, more data in various acoustical conditions is re-
quired. Data will be collected using an occluding intra-
aural earpiece featuring in-ear microphones, outer-ear micro-
phones and miniature loudspeakers in each ear. Recordings
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will be made in protected mode (attenuating outside sounds)
and transparent mode (environmental sounds are played back
in the earcanal) in quiet as well as in noise. Various human-
produced sounds will be also included, ranging from a cough
to the blink of an eye.

3.2 Classification of Biosignals
In this section, the steps to achieve the detection algorithm
for non-verbal events and physiological signals are described.
The primary challenge will be the detection and classifica-
tion of breathing sounds and heartbeats which are relatively
faint and occur simultaneously as other signals. Furthermore,
the physiological signal detector and classifier must be com-
patible with that proposed in [10] which detects and clas-
sifies various non-verbal audio events captured from inside
the occluded earcanal. Since in-ear recordings have a limited
bandwidth, of about 2 kHz, raw audio samples are downsam-
pled fronm 44.1 kHz to 8 kHz. Signals are then framed into
5-second frames. Features are then extracted from each 5-
second frame. Various features are of interest including the
spectrogram (an example can be seen in Figure 1), MFCCs,
ZCR, and Per Channel Energy Normalization (PCEN). Fea-
ture reduction are used to reduce the computational complex-
ity of the algorithm. Various classifiers will be explored in-
cluding CNN and SVM models. Figure 2 illustrated the main
structure of this approach.

4 Conclusions
With the fast development of in-ear health monitoring tech-
nologies there is a need for accurate, efficient and quick al-
gorithms to detect and classify real-time information. The
proposed open-access database will serve to improve existing
ML algorithms and speed up research in this field. In addi-
tion, the achievement of the proposed approach will open up
the door to various health monitoring applications with hear-
ables, including vital sign tracking as well as emotion classi-
fication.
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